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Abstract

The research addressed interactions amongst droplets in a dense spray. The effects
of neighboring droplets, that were a few droplet diameters away, on a vaporizing droplet
were examined by theoretical and computational analyses for two basic configurations:
(1) the axisymmetric convective situation where two or three droplets moved in tandem
and (2) the fully three-dimensional convective situation where droplets moved side-by-
side. Droplets in the wake of other droplets experienced a reduction in drag force, trans-
port rates, and vaporization rate, sometimes causing collisions. Sufficiently close droplets
moving side-by-side, approximately in parallel, experienced a repulsive lift force and an
increased drag force. Vaporizing liquid oxygen droplets in a hydrogen gas environment
were studied at both subcritical and supercritical pressures considering the variable liquid
density with the associated droplet swelling during heating and the dependence of the lo-
cal critical state upon local composition. Droplet surface conditions could be subcritical
even if pressures were supercritical for pure oxygen due to diffusing hydrogen. The critical
surface regressed towards the droplet surface as the droplet heated. Engineering correla-
tions for the drag coefficients, Nusselt numbers, and Sherwood numbers for hydrocarbon
fuel droplets in dense sprays were obtained.



Nomenclature

a, initial droplet radius
at instantaneous droplet radius
do, initial distance between droplet centers normalized initial droplet diameter
dt instantaneous distance between droplet centers normalized initial droplet diameter
D"O dimensional mass diffusivity at infinity
Dij binary diffusion coefficient
f fugacity
h' dimensional film heat transfer coefficient
h' dimensional film mass transfer coefficient
AH,, enthalpy of vaporization
k1 dimensional thermal conductivity at infinity
k thermal conductivity of the gas phase
rh, mass vaporization rate on the droplet surface
Yf.,a average mass fraction on the droplet surface
i,j, k unit. vectors in x, y, and z direction, respectively
it instantaneous droplet position in y direction
N 1, N 2, N 3 numbers of grid points in ý, 77, C directions
'0 dimensional kinematic viscosity at infinity

P pressure
r radial direction
Re initial Reynolds number based on initial droplet diameter, Udo2a'l/"
Ret instantaneous Reynolds number, Ud,t2al/v",c0

T temperature
t dimensionless time normalized by ao/Ud,o
Ud,, initial dimensional droplet velocity

U'd,t instantaneous dimensional droplet velocity, VT/OOt T U.,t
U',t instantaneous dimensional droplet velocity in x-direction
V',t instantaneous dimensional droplet velocity in y-direction
X, y,)z Cartesian coordinates
x mole fraction
Y mass fraction

Greek symbols
p dimensionless gas density normalized by p"

00 dimensional gas density at infinity
0 angular direction

7, , C nonorthogonal generalized coordinates
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r viscous stress tensor
OP. pseudo-stream function
0 fugacity coefficient

Superscript
I dimensional quantity

Subscript
o initial quantity
I liquid phase

3



1. Introduction

Practical combustors with direct injection of liquid fuel have regions of large con-
centration of droplets, which we will call dense sprays. In such regions, the effect of
neighboring droplets modifies the ambient conditions in the flow near any given droplet.
As a consequence, the drag coefficient, lift coefficient, moment coefficient, Nusselt number,
Sherwood number, and vaporization rates are different from those of an isolated droplet
at the same Reynolds number and transfer number. Also, the droplet trajectories, droplet
lifetime, and local gas-phase mixture ratios can be significantly affected by the differences
in transport processes and the modified flow field due to neighboring droplets. In many
practical situations, including liquid rocket engines, turbojet engines, and ramjet engines,
droplet heating and vaporization can be a rate-controlling phenomena. Therefore, the
modifications in the droplet behavior due to dense spray effects can have important con-
sequences.

The geometrical configurations of droplets in a real region of large concentration are
complex and subject to uncertainty. Droplet arrays as discussed by Sirignano [1], although
artificial, can provide information on droplets interaction and give a detailed analysis of
the problem. The principal investigator and his co-workers [2-7] performed research on
axisymmetric configurations of interacting particles (or droplets) in the wake of another
particles (or droplets). The major new goal of this project is the study of three-dimensional
interactions between droplets.

Three tasks has been performed step by step to attack the three-dimensional in-
teractions between droplets. First, we invebtigated incompressible, isothermal, three-
dimensional flow over two identical (solid or liquid) spheres which were held fixed relative
to each other in the transverse direction against the uniform stream at Reynolds number
0(100). We determined the effects of three-dimensional interactions on the lift, moment,
and drag coefficients as a function of the dimensionless distance between the two spheres
and Reynolds number. Some novel phenomena in the near wake were discovered as the
gap between the two spheres decreases. Our results are also compared with available ex-
perimental and numerical data. This study will be discussed briefly in Section 2. Details
are provided in Reference 9 which is attached as an addendum to this report.

Secondly, we studied interactions of two identical droplets which are injected and then
move side by side into an initially quiescent, incompressible, isothermal fluid medium.
The droplets decelerate due to the drag and change their direction of motion due to the
lift. By placing the origin of a noninertial reference frame at the center of mass of the
two droplets, the Navier-Stokes equations include a noninertial term which is evaluated
from Newton's second law for the droplet motion. This study will be discussed briefly in
Section 3. Details are provided in Reference 18 which is attached as an addendum to this
report.

In the third task, we extended the above studies by considering three-dimensional
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interactions between two identical n-octane droplets injected into a high-temperature and
high-pressure environment which is typically encountered in practical combustors. The
droplets are cold initially and are subsequently vaporizing due to the high temperature.
The energy equation, the species equation, and the equation of state, in addition to
the Navier-Stokes equations, are solved simultaneously in the gas phase to account for
vaporization of the droplets and temperature distribution in the domain. In addition,
nonlinear coupled interface boundary conditions between the gas and liquid phases are
imposed simultaneously. This study will be discussed in detail in Section 4. We expect
to submit a manuscript for journal publication on this subject in the near future.

In addition to the above three-dimensional calculations, three tasks which make use
of advanced axisymmetrical models have been conducted in this program, namely: (1)
axisymmetric interactive fuel droplet calculations, (2) LOX vaporization at subcritical
conditions, (3) LOX vaporization at near-critical or supercritical conditions.

The first task investigates fuel droplets moving in tandem by axisymmetric calcu-
lations. This research addresses the interaction of three vaporizing droplets moving
coilinearly which represents a model of an injected stream of fuel droplets. The pur-
poses of this study are to study the wake effect of the lead droplet on the downstream
droplets and to examine the effects of initial spacing on the total system. Some technical
discussion will be given in Section 5. More details are available in our journal publication
[7]. This publication is attached as an addendum to this report.

In another task, vaporizing liquid oxygen droplets are studied including axisymmetric
interactions amongst fuel and oxygen droplets. Vaporization of LOX droplets in convective
hydrogen environment over a wide range of pressure has been investigated. Current
emphasis is placed on the understanding of supercritical LOX vaporization where many
complex transport phenomena, such as the vanishing of the gas/liquid interface, diffusion
of gas vapor into droplet, and real gas effects, become very important in determining the
droplet vaporization rate.

Progress has occurred in the study of vaporization of an isolated LOX droplct in a
convective hydrogen environment at subcritical conditions. This study will be discussed
in Section 6. A copy of the preprint describing this research is attached as an addendum
to this report. Modifications of this low pressure model to consider near-critical or super-
critical conditions have been made in order to fulfill this task. The details are presented
in Section 7.

2. Three-dimensional flow over two spheres placed side by side

2.1 Problem statement and numerical solution

We consider a steady, three-dimensional, incompressible, laminar flow of a Newtonian
fluid past two identical (solid or liquid) spheres held fixed, with the line connecting the
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sphere centers normal to a uniform stream, as shown in Figure 1; d, denotes the distance,
normalized by the sphere radius, from the sphere center to the x-y symmetry plane be-
tween the two spheres. Far upstream, the flow is uniform with constant velocity Ucj
parallel to the x-axis. Two symmetry planes are noted in Figure 1: the x-z plane contain-
ing the centers of the two spheres and the x-y plane located at z = -do midway between
the sphere centers.

The governing equations and boundary conditions, coordinate system, computational
grid, and numerical method are discussed in detail in the addendum to this report.

The dimensional drag, lift, and moment coefficients are evaluated from

FD' = I -p'n *i dS' + I n-,r'i dS',(1

FL = f -p'n-k dS' + f n-r'-k dS', (2)

M'= fr/ X Tr dS', (3)

where S' denotes the surface of the sphere, n is the outward unit normal vector at the
surface, r' is the position vector from the center of the sphere, and r' is the viscous
stress tensor. The lift force is assumed positive when iU is directed toward the positive
z-axis. Due to symmetry, only the y-component of the moment is non-zero and is assumed
positive in counter-clockwise direction.

Nondimensional coefficients of drag, lift, and moment are defined respectively as

CD = 1,P 02 (4)
Vp'U7rao2

CL = FL (5)2P U22rao2

CM = I -M..j (6)

2.2 Results and discussion

We first tested the three-dimensional code by solving the flow generated by an impul-
sively started solid sphere in a quiescent fluid at two Reynolds numbers: 50 and 100. The
time-dependent solution converges asymptotically to a steady-state which is in excellent
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agreement with available experimental data and correlations as shown in Tables 1, 2, 3,
and 4. Tables 1 and 3 list the drag coefficients as a function of the computational grid
density at Reynolds numbers 50 and 100 respectively, and compare them with the data
of Roos & Willmarth [10] and also with the correlations of Clift et al. [11]. Tables 2 and 4
show the pressures at the front and rear stagnation points and the separation angle mea-
sured from the front stagnation point as a function of grid density at Reynolds number 50
and 100, in comparison with the data of Taneda [12] and also with the correlations of Clift
et al. [11]. Although the solution in these test cases are axisymmetric, none of the three
velocity compontnts in our formulation becomes identically zero. Therefore, the three-
dimensional solution scheme is fully exercised here. The calculations were performed for
three different grids, (N1 x N 2 x N3) = (20 x 21 x 21), (30 x 31 x 31), and (40 x 41 x 41),
in a computational domain with an outer boundary located at 21 sphere radii from the
sphere center. The dimensionless times needed to reach steady state for Reynolds number
50 and 100 are 9 and 15, respectively. The results for interactions of two solid spheres will
be presented and discussed first and, then, those for two liquid spheres will be discussed
shortly thereafter in the remainder of the section.

In order to illustrate better the fluid motion, we consider the flow field in the x-z plane
of symmetry, which is defined as the principal plane, where the narrowest path between
the two spheres occurs; hence the strongest interactions between them occur there. We
first describe the main flow features that emerged from our results, then we examine the
results in detail.

Figure 2(a) displays a sketch of actual streamlines around a single solid or liquid
sphere in the principal plane at Reynolds number 100. As expected, two identical counter-
rotating vortices (corresponding to a single vortex ring) exist in the wake, and the down-
stream stagnation point is located on the axis of symmetry. Line I-II connecting the front
and rear stagnation points in the standard axisymmetric flow over a single sphere will be
used as a reference line. We refer to the region above the line I-II as the 'top' or 'upper'
region and that below the line as the 'bottom' or 'lower' region.

Figure 2(b) displays a sketch of actual streamlines around one of the two spheres in
the principal plane at Reynolds number 100. The two spheres are separated by a distance
do = 2. Due to the blockage of the flow in the gap between the two spheres, the streamlines
diverge away from the x-y symmetry plane (located at z = -d.) as they approach the
front stagnation region. Thus, the stagnation streamline of the single sphere case (I-
S1 in Figure 2(a)) no longer intersects the sphere, and another streamline closer to the
symmetry plane meets the sphere to form the new front stagnation streamline at point
P. As a consequence, the fluid particles move faster in the lower left region around the
sphere than in the upper left region, and this causes the pressure in the lower left region
to be lower than that in the upper left region. The resulting pressure difference between
the upper and lower left regions is higher than that between the bottom of the sphere and
the narrow path. This pressure imbalance, which will be discussed later in detail, causes
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repulsion of the two spheres. The contribution of shear stress differences to the repulsion
will be discussed later in this section.

Figure 2(b) shows an interesting streamline pattern in the wake region. Two counter-
rotating eddies exist in the wake but their configuration is quite different from that for
axisymmetric flow. The lower eddy is formed by the fluid separating on the lower portion
of the sphere as in the case of axisymmetric flow. The upper eddy is not formed by
the fluid separating on the upper portion of the sphere, but rather by the fluid turning
around the lower eddy and being entrained by the upper flow. This upper eddy is detached
from the sphere. A portion of the fluid moving around the bottom of the sphere passes
between the detached upper eddy and the sphere. The streamline A-B encompassing the
upper eddy intersects itself, and the intersection point, C, designated as the downstream
stagnation point, is shifted toward the x-y symmetry plane. Both eddies are smaller than
those of the axisymmetric flow. These new features can be explained as follows. The
pressure above the upper wake is less than that below the lower wake due to the increased
acceleration of the fluid in the narrow path between the two spheres. Thus, the fluid
particles turning around the lower eddy are pushed into the upper region of the wake.
The pressure distribution around the sphere will be discussed further.

Figure 2(c) shows a sketch of the actual streamline pattern at Reynolds number 100
for the case of d, = 1.5. The shifting of the front stagnation streamline and stagnation
point toward the x-y symmetry plane are more obvious here than in the previous case
of d, = 2. The significant difference is in the wake region where both the upper eddy
and downstream stagnation point vanish. Fluid particles separating on the upper portion
of the sphere move downstream without returning (streamline D-E). On the other hand,
fluid particles turning around the lower eddy move into the upper region of the wake until
they reach near the upper separation point, D, and then move downstream in an S-shaped
path (streamline F-G) without returning to form an eddy. The lower eddy shrinks as the
two spheres are closer, and the pressure difference between the top and bottom of the
wake is larger.

It is interesting to examine the changes in the separation region at the sphere surface
for the cases of d, = 2 and 1.5. More specifically, we examine the behavior of the circle
of intersection of the wake and the sphere. Our results show that the circle is slightly
shifted toward the x-y symmetry plane due to the decreased pressure in the gap region
with respect to that in the wake lower region. This shifting produces separation angles
at the top, middle, and bottom of the sphere with values of 123.10, 126.50, and 126.2',
respectively, for the case of d0 = 1.5, where the angles are measured from the front
stagnation point of the axisymmetric flow case. This is in contrast with an angle of
125.7' at all positions in the single sphere case.

A stream function 0 cannot be defined and calculated from the velocity in the principal
plane due to the existence of a divergence associated with the third component of velocity.
Nevertheless, for descriptive purposes only, it is convenient to use the algorithm
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Op.,(r, Oo) = 0o.3(r., 0,) + -uodr (7)

to present approximations to the streamline pattern. It is understood that since a true
strearnfunction does not exist, the pseudo-streamfunction, Op,, is dependent upon the
integration path. The above algorithm specifically involves only radial integration; uo
can be recovered by differentiation of this function, but Ur cannot be recovered. The
streamlines presented in Figures 2(a), 2(b), and 2(c) were based on this algorithm.

Phenomena in the wake similar to those described above have been found in a few
previous studies. Rosfjord [13] obtained results similar to those in Figures 2(b) and 2(c)
in his experimental and numerical studies of the recirculating flow region between two-
dimensional, parallel, separated jets. He found that for velocity ratios between two jets
equal to 1.11 and 1.25 (upper to lower), two eddies exist near the injector face, but the
upper eddy is detached from the injector face, and a portion of the fluid originating at
the lower jet is entrained by the upper jet, passing between the detached upper eddy and
the injector face. He also reported that for a velocity ratio of 1.4, only the lower eddy
existed and a complete entrainment of the weaker jet was observed. In particular, the
flow S-shaped loop near the stronger jet was clearly indicated. Recently, Dandy & Dwyer
[14] also found a similar flow pattern in their numerical study of steady, uniform shear
flow past a single solid sphere.

In order to facilitate the visualization of the three-dimensional character of the flow
in the wake region discussed above, we present the pathlines of selected fluid particles in
the addendum.

In the following discussion, we classify the proximity of the two spheres into three
regimes: close, intermediate, and far-separated, depending on the values of d, and Re.
Figures 3 and 4 pertain to flows around solid spheres, while Figures 5, 6, 7, and 8 relate
to flows around liquid spheres.

Figures 3(a), 3(b), and 3(c) show the total lift coefficient and the lift coefficients due to
viscous and pressure contributions, respectively, as a function of do at Reynolds numbers
50, 100, and 150. The total lift coefficient, Figure 3(a), is positive when the two spheres
are close ( d, < 7.9 for Re = 50, d, < 4 for Re = 100, and d, < 3.4 for Re = 150 ). That
is, the two spheres repel each other, and the repulsion is stronger the closer they are. Our
results show that both the viscous and pressure contributions have an important effect
on the repelling force, but the pressure contribution is more dominant when Re > 100
(compare Figures 3(b) and 3(c)). On the other hand, the total lift coefficient is negative
and relatively small - that is, the two spheres attract each other weakly - at intermediate
separation distances ( 7.9 < do < 21 for Re = 50, 4 < d, < 21 for Re = 100, and
3.4 < d, < 21 for Re = 150 ). At these distances, the pressure is the main contributor
to the attraction force at all Reynolds numbers. The smaller the Reynolds number, the
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smaller the pressure effect, the weaker the attraction, and the narrower the region of
attraction is. When d, > 21, however, the lift vanishes, and the two spheres have no
interactions at any Reynolds numbers.

As discussed earlier, when the two spheres are in close proximity, the front stagnation
point is shifted toward the x-y symmetry plane, and the fluid particles accelerate faster
in the lower left region than they accelerate in the upper left region of the sphere. This
difference in acceleration results in a net negative pressure gradipnt normal to and away
from the x-y symmetry plane, contributing to the repulsion between the two spheres.
The shear stress is also higher in the lower left region than in the upper left region.
Furthermore, the shear force in the lower left region, due to its inclination with the x-
axis, contributes to both the lift (parallel to the z-axis) and drag (parallel to the x-axis),
whereas the shear force at the top of the sphere contributes mainly to the drag. Therefore,
both the pressure and shear forces contribute to a positive lift force (i.e. the two spheres
repel each other) when the two spheres are close.

On the other hand, when the two spheres are in the intermediate separation regime, the
velocity vector distributions show that the front stagnation streamline is almost straight,
and thus the flow in the lower left is not affected by the presence of the other sphere.
Nevertheless, the gap between the two spheres causes the flow to accelerate slightly faster
on the top of the sphere than on the bottom, and as a result, the average pressure in the
lower region is slightly higher than that in the narrow gap. Thus, the two spheres attract
each other weakly, and the attraction force is mainly due to the pressure distribution.
The shear force, nearly parallel to the x-axis at the top of the sphere, contributes mainly
to the drag but not to the lift.

Figure 4 shows the drag coefficient as a function of the dimensionless distance at
Reynolds numbers 50, 100, and 150. The drag increases with decreasing d, when d. is less
than 4 for all Reynolds numbers. It increases slightly with increasing d0, at intermediate
separation distances, and eventually tends to that of a single sphere when d, > 21. The
drag increases as the two spheres get close because the shear stress on the sphere is
increased and the pressure distribution is changed due to the flow acceleration on the
lower left region as well as in the gap between them. Results for the moment coefficient
are provided in the addendum.

In the analysis of the flow field past two liquid spheres, we use a viscosity ratio (in-
ternal to external fluid) of 25 and density ratio of 300. These values are typical of a
liqui*d-hydrocarbon fuel in a high-temperature, high-pressure surrounding gas generally
encountered in gas turbine combustors (Raju & Sirignano [5]).

As in the solid sphere case, we examine the flow field for two liquid spheres in the x-z
plane of symmetiy, the principal plane, where the narrowest path between liquid spheres
is encountered. The streamlines discussed earlier in Figures 2(a), 2(b), and 2(c) can also
represent typical streamlines in the external flow of liquid spheres. However, there are
differences from the solid sphere case. First, the angle, measured from 0 = 0, at which
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separation occurs on the sphere surface is much higher than that of the solid sphere.
Secondly, a closer examination of the velocity vector plot (Figures 5(a) and 6(a)) in
the wake region indicates that the separating streamline, instead of being nearly normal
to the sphere surface, now curves closer to the sphere surface producing a "squashed"
recirculation zone. The length of the recirculating eddy is also slightly smaller than that
of the solid sphere.

Figures 5(a) and 5(b) show the velocity vector fields of the external and internal flows,
respectively, in the principal plane at Reynolds number 100 where the two spheres are
separated by a distance d, = 2. A secondary eddy in the liquid-sphere stern region is
evident in both the upper and lower regions in the principal plane, but the eddy centers
in both regions are asymmetrical with respect to the z = 0 plane. Also, these eddies
are concomitant with the occurrence of the eddies in both regions in the external flow.
Figures 6(a) and 6(b) show the velocity vector fields of the external and internal flows
in the principal plane at Reynolds number 100 for the case of d0 = 1.5. The secondary
internal eddy in the liquid-sphere stern region exists only in the lower region, and the
secondary eddy in the upper region no longer exists. The vanishing secondary internal
eddy in the upper region is accompanied by the disappearance of the recirculating eddy
in the upper region in the external flow.

Calculations of the lift, moment, and drag co efficients were performed for dimensionless
distances from the liquid sphere center to the symmetry plane between two liquid spheres
in the range 1.5 < d, < 25, for a viscosity ratio (internal to external fluid) of 25 and density
ratio of 300 at Reynolds numbers 50, 100, and 150. Figures 7 and 8 show the coefficients
of total lift and drag as a function of dimensionless distance at Reynolds numbers 50, 100,
and 150. The coefficients of total lift, moment, and drag are slightly smaller in absolute
value than those of the solid spheres at both the repelling and attraction separation
distances and at all Reynolds numbers. The lower coefficients of the liquid sphere are
attributed to the surface motion of the liquid sphere which reduces the velocity gradient
and friction force. A smaller drag coefficient for the liquid sphere in axisymmetric flow
has been also found in earlier calculations (Clift et al. [11]).

We did not perform calculations for Reynolds number higher than 150, because it is
known that the wake becomes unstable at a Reynolds number in the range of 130-220
for a single sphere (Taneda [121; Goldburg & Florsheim [15]; Willmarth & Roos [10];
Nakamura [16]; Kim & Pearlstein [17]) and our present goal is to obtain steady-state
solutions. For the solution of a flow including the three-dimensional unsteady wake, a
complete computational domain (i.e. encompassing the two spheres without a symmetry
plane) and periodic boundary conditions in (-direction will be necessary.
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3. Three-dimensional flow computation for two interacting,
moving droplets

3.1 Problem statement

We consider an unsteady, three-dimensional, incompressible, laminar flow generated
by two identical (spherical) droplets injected into initially quiescent constant property
Newtonian fluid. The droplets move side by side in the same plane as shown in Figure 9,
where dt denotes the instantaneous distance, normalized by the droplet radius, from the
droplet center to the y-z symmetry plane between the two droplets. We neglect the net
gravity force acting on the droplet and also assume that the Weber number is small enough
that the droplet remains spherical. We choose the origin of a non-rotating noninertial
reference frame at the center of mass of the two droplets and the angle of initial droplet
motion a, = 0. Far upstream, the flow is uniform and has an instantaneous velocity V•,t j
parallel to the y-axis. It is noted that there are two symmetry planes in Figure 9. One is
the x-y plane in which the centers of the two droplets lie, and the other is the y-z plane
which is midway between the droplet centers.

As shown in Figure 9, we utilize three coordinate systems in our formulation, the
Cartesian coordinates (x,y,z) for the gas phase whose origin is at the center of mass of
the two droplets, the Cartesian coordinates (xI, y1, zt) for the liquid phase whose origin is
at the droplet center, and also the nonorthogonal generalized coordinates ( ,). 7 is
the radial, 71 is the angular, and C is the azimuthal direction. Due to symmetry of the
geometry, the physical domain is chosen as one quarter of an ellipsoid-like space.

Details about the coordinate system, governing equations and boundary conditions,
and the numerical method are provided in Reference 18 which is an addendum to this
report.

The drag, lift, and moment coefficients are evaluated in dimensional form as follows.

FD = L -P'n-eD dS' + n'r'eD dS' (8)

FL = j -P neL dS' + L n7'eL dS' (9)

M= fs r' x r' dS', (10)

where eD =_ (-sincti + cosacj), eL (coscati + sinacj), S' denotes the surface of the
droplet, n is the outward unit normal vector at the surface, r' is the position vector from
the center of the droplet, and -r' is the viscous stress tensor.
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The repelling force is assumed positive. Due to the geometrical symmetry, only the
z-component of moment exists, and counter-clockwise direction is assumed positive.

The non-dimensional coefficients of drag, lift, and moment are defined respectively as

CD - (11)

1 ,,r'2 - 2 ( 1
2p Uý ,t~rao

CL = FL'
C - F= (12)

1 IUl'T2 f 2
•1" •d,ta ao

CM= M'-k (13)

7P• •d,t ao

The moving.droplets change their directions due to the interactions with the surround-
ing fluid. However, in order to insure its accuracy, the computational grid must satisfy

the condition that the lift and torque are zero for a single droplet moving in any direction.

3.2 Results and discussion

We first tested the three-dimensional code by solving the steady axisymmetric flow
past a single droplet at Reynolds number 100. Since the code developed solves for three
Cartesian components of velocity in the transformed grid, an axisymmetric test calculation
still exercises the fully three-dimensional aspects of the code.

Here, we discuss the flow generated by an impulsively started single droplet into an

initially quiescent fluid using the three-dimensional solution procedure for viscosity ratio
of 25 and a density ratio of 300 (liquid to gas) at Reynolds number 100. The time-
dependent solution converges asymptotically to the steady-state results. Table 5 lists the
drag coefficients (CDP and CDV are respectively the pressure and viscous parts of CD)

as a function of the computational grid density which are in good agreement with the
correlation of Rivkind & Ryskin [19]. Table 6 shows two angles measured from the front
stagnation point where O0s is the angle at which the surface vorticity changes its sign and
02s is the angle at which the surface velocity is zero.

The calculations were performed for three different grids, N1 x N 2 x N3 and NJ1 x

N 21 x N 31 = 20x 11 x32 and 10x 11 x32,30x 15x48 and 15x 15 x48, and40x2I x64
and 20 x 21 x 64, in a computational domain having an outer boundary located at 21

droplet radii from the droplet center. The solutions from the three different grids were
stable and smooth, and each takes dimensionless times of 20 to reach steady state.
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Tables 5 and 6 show that the results of the 30 x 15 x 48 grid differ by only 0.8 % in
the drag coefficient and 0.7 % in the separation angle from those of the 40 x 21 x 64 grid.
Thus, for computational economy (a long time period is needed for our time-dependent
solution of the moving droplets), we selected the medium size grid 30 x 15 x 48 for the
external flow and 15 x 15 x 48 in the liquid phase for the remaining calculations.

For the interaction of two moving droplets, calculations were performed for initial
dimensionless distance d, = 2 and 9 at initial Reynolds number !00 for the time period
0 < t < 250. This period is about one quarter of the lifetime for a vaporizing droplet
injected into a combustor, and so major changes in transport processes and flow field
would be expected to occur. The viscosity and density ratios (liquid to gas) for the
droplet is 25 and 300, respectively, which are typical of a liquid-hydrocarbon fuel in a
high-temperature, high-pressure surrounding gas generally encountered in gas turbine
combustors.

Figure 10(a) shows •he trajectory of one droplet for d, = 2, where the numbers on
the line denote the dimensionless time measured from injection. The final location of
the droplet at t = 250 is (dt, lt) = (2.505, 212.6). Now, since the final location of a
single droplet at t = 250 in the case of no drag and lift forces acting on it would be
(di, lt) = (2, 250), the figure indicates that the two droplets are repelling each other as
well as decelerating, and the change of distance (normalized by droplet radius) is much
higher (37.4 vs. 0.505) due to the drag than due to the lift force. Figure 10(b) shows the
trajectory of one droplet for d, = 9. The final location of the droplet at t = 250 is (dt, It)
= (8.968, 213.1). The theoretical final location of a single droplet at t = 250 in the case
of no drag and lift forces would be (dt, It) = (9, 250); therefore, Figure 10(b) indicates
that the two droplets are weakly attracting each other as well as decelerating, and the
change of distance is much higher due to the drag than due to the lift force.

Figure 11 shows the lift coefficients of the droplet for do = 2 and 9 as a function of
the instantaneous Reynolds number, where the repelling force is taken as positive. The
lift coefficient for d, = 2 is positive during the time period 0 < t < 250, and becomes
gradually smaller in time because the distance between the droplets is increasing and their
directions of motion are changing due to the repelling force. On the other hand, the lift
coefficient for do- = 9 is negative during that time period but slowly goes towards zero.
The change of the distance between the two droplets for d, = 9 case is negligibly small
as shown in Figure 10(b). Thus, this result also indicates that the lift coefficient slowly
approaches zero when Reynolds number decreases with the fixed dimensionless distance
9. The figure also shows that rapid change occurs initially due to an impulsive start of
the droplets and the quasi-steady state occurs when t > 30.

Figure 12 shows the drag coefficients of the droplet for d, = 2 and 9 as a function
of instantaneous Reynolds number. The drag coefficient for d, = 2 is higher than that
for d, = 9. In earlier time, the difference is greater but becomes gradually smaller as
time increases. The reason is that the droplets for d, = 2 are repelling each other and
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the distance between them is increasing, and so the drag becomes gradually smaller. The
drag coefficient for d, = 9 is almost identica! to that for a single droplet (slightly higher
than for a single droplet when t > 30). We found in Section 2 that for the fixed spheres
and d, > 4, the drag coefficient is almost identical to that of a single sphere. Figure
12 also shows large drag coefficient initially which indicates that large shear stress and
pressure occur initially due to impulsive start.

The moment coefficients are discussed in the addendum. That paper also discusses the
sudden drop in the speed at the moment of droplet injection and the monotonic decrease
with time following injection. The speed for d, = 2 is lower than d, = 9 due to the larger
drag of d, = 2.

4. Three-dimensional flow computation for two interacting,
vaporizing, moving droplets.

We consider an unsteady, three-dimensional, variable property, laminar flow generated
by two identical (spherical) droplets injected into an initially quiescent, high-temperature,
high-pressure air environment. Then, the droplets move side by side in the same plane as
shown in Figure 9. The coordinate system is exactly same as that used in Section 3.

Since our goal is to study the flow interaction with the two droplets, we present the
equations for the gas and liquid phases. The governing equations in both phases and
the boundary conditions are nondimensionalized using the initial droplet radius a' as the
characteristic length, the initial droplet velocity Ud',o as the characteristic velocity, and
the initial air temperature Too,° as the characteristic temperature. The properties in the
gas phase are normalized by those at infinity, and the properties in the liquid phase are
normalized by initial droplet properties.

Gas phase

T + V-(pV) = 0, (14)
at

dV3  OpV 2P- 7- + o--t + V.(pvv) =-Vp + -V,,(15)

Cp(8-T + V.(pVT)) + (h1 - ha)(--y- + V.(pVyf))at at
2 22 VP(kVT) + 2- V'((hf - ha)pDVYf), (16)

RePr ReS1
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S+ V-(pVYf) 2 ReScV.(pDVYf), (17)

where V, is the velocity of the center of mass of the two droplets, -r is the deviatoric
stress tensor, h1 and ha are the enthalpies of fuel vapor and air, respectively, Y1 is the
fuel mass fraction, and D is the diffusivity.

Liquid phase

V.V -= 0 , (18)

T + -- + V.(V1 V1 ) = -Vp 1 + 2-V'-71 , (19)
dF t 2e

CP,(--T + V.(VT,)) 2 Rp V.(kVT,), (20)

where Vd is the droplet velocity and the subscript 1 denotes the liquid phase.
The governing equations are transformed to the generalized coordinates (ý, 77, (), which

allow for any three-dimensional body of arbitrary shape. The numerical integration
of the equations is performed using a computational cubic mesh with equal spacing
(6ý = b = b( = 1). The conditions at the interface were derived from principle of con-
tinuity, conservation, and thermodynamic equilibrium. The overall behavior of droplet
vaporization is strongly dependent on the evaluation of local properties at the interface
where complex nonlinear transport phenomena take place. A quasi-linearization method
was adopted to evaluate iteratively the nonlinear terms in the interface conditions. Kim
et al. [20] will provide details of the boundary and interface conditions.

The code we have developed will take a large amount of cpu hours on a Cray Y-MP
due to the integration for a long time period to capture an unsteady behavior of droplets
and three-dimensionality of the problem. To check our numerical algorithm, we solved the
flow generated by a single cold n-octane fuel droplet suddenly injected into a hot and high
pressure gas stream by using a coarse grid (20 x 11 x 32 in the gas phase and 12 x 1l x 32
in the liquid phase). The values of the physical parameters used are given in Table 7.

Figure 13 shows the history of the drag coefficients for a single vaporizing droplet
during the time period 0 < t < 250. It is shown that a large drag coefficient is found
initially which indicates that large values of shear stress and pressure occur initially due to
the impulsive start. During the initial relaxation period, tile drag coefficient falls rapidly.
Subsequently, the drag coefficient decreases slowly due to the blowing effect on the droplet
surface despite a reduction in the Reynolds number.

Figure 14 shows the average Nusselt number as a function of dimensionless time. The
average Nusselt number is defined as follows.
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2a'h'uav --

k(VT)-n dS (21)
27ra,(To. - T S:,

where ' denotes dimensional quantity and k is the thermal conductivity of the gas phase
normalized by the thermal conductivity at infinity. Figure 14 shows that the Nusselt
number is decreasing with time. The Nusselt number is the dimensionless rate of the heat
transfer, and the decrease of the Nusselt number is mainly attributed to the reduction of
the Reynolds number due to the droplet deceleration under the action of the drag.

Figure 15 show the average Sherwood number as a function of dimensionless time.
The average Sherwood number is defined in dimensional form as follows.

2a'h'ShC,, t-

1 I
1 jPD(VYf)'n H, (22)

27rat(Yfco - ,a") d

where ' denotes dimensional quantity and D is the mass diffusivity of the gas phase
normalized by the mass diffusivity at infinity. Figure 15 shows that the Sherwood number
is decreasing with time. The Sherwood number is the dimensionless rate of the mass
transfer, and the decrease of the Sherwood number is mainly attributed to the reduction
of the Reynolds number.

5. Axisymmetric interactive fuel droplet calculations

This axisymmetrical calculation considers the effects of variable thermophysical prop-
erties, transient heating and internal circulation of liquid, deceleration of the flow due
to the drag of the droplet, boundary-layer blowing, and moving interface due to surface
regression as well as relative droplet motion. Details of the analysis are provided in Ref-
erence [7] which is included as an addendum to this report. The results are compared
with those of an isolated droplet [21] as well as those of the two-droplet system [61 to
investigate the effect of the presence of the third droplet. The interaction effects from the
downstream or upstream droplet are identified. Then the behavior of trailing droplets,
which follow the first two or three droplets, can be estimated from the results of the
first two or three droplets on account of the nearly periodical nature of linear droplet
arrangements.

The variations of trajectory with time and drag coefficients vs. instantaneous Reynolds
number for the cases of different initial spacings are illustrated in Figure 16. D12 is the
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time-dependent nondimensional center-to-center spacing between the first two droplets
and D23 is the corresponding spacing between the second and third droplets. Results
of Case 1 with large initial spacing (D12=D23=12) indicate that the drag coefficient is
smaller for the second droplet than for the lead droplet and still smaller for the third
droplet. The drag coefficient of each droplet is reduced from the isolated droplet value.
The major decrease in drag occurs in the first two droplets. In Case 2, the drag coefficients
of the lead and the second droplets are significantly reduced (comparing curves 7 and 10,
and 8 and 11, respectively) due to the strong interactions when the first two droplets are
spaced only two diameters away. Similar trends occur for the downstream droplet pairs of
Case 3 (comparing curves 8 and 14,and 9 and 15, respectively). The third droplet in Case
2 has a higher drag coefficient than that of the second droplet since the second droplet
is better shielded by the droplet before it. The D23 thus increases with time. Also, note
that the drag coefficient of the third droplet, which is spaced far away from the second
droplet, seems to be approximately independent of D12 as indicated in curves 9 and 12.
However, it strongly depends upon D23 as illustrated in curves 9, 12 and 15.

Results for the cases of sufficiently large spacing (above approximately 6 droplet di-
ameters) show that the flow field of each droplet is qualitatively similar to that of an
isolated droplet, although the transport rates are reduced along the downstream direc-
tion due to the cascade effect of the wake. The major drops in transport rates occur in
the first two droplets. For the cases of small droplet spacings (less than approximately
3 droplet diameters), the flow field of downstream droplets can be significantly altered
due to the interaction effects from the upstream droplets. Usually, the second droplet has
the lowest drag coefficient since it interacts with both neighboring droplets. However, the
difference in transport rates between the second and the third droplets is not significant
since both droplets are fully protected by the wake of the first droplet. The effect of
D23 on the behavior of the first droplet is insignificant. However, depending upon the
values of D12 as well as D23, the effect of D23 on the behavior of the second droplet may

become significant. The general qualitative conclusions drawn from the two-droplet study
[6] can be applied to two neighboring droplets in the three-droplet analysis. The correla-
tions for heat transfer and droplet dynamics have been developed and are applicable in a
one-dimensional droplet spray calculation.

In addition to the general qualitative conclusions drawn from the two-droplet study,
we have further obtained the following conclusions:

(1) Results for the cases of sufficiently large spacing (above approximately 6 droplet
diameters) show that the flow field of each droplet is qualitatively similar to the field of an
isolated droplet, although the transport rates are reduced along the downstream direction
due to the cascade effect of the wake.

(2) For the cases of small droplet spacings (less than approximately 3 droplet di-
ameters), the flow field of downstream droplets can be significantly altered due to the
interaction effects from the upstream droplets.
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(3) The major drop in transport rates occur in the first two droplets. Usually, the
recirculating wake from the lead droplet has dissipated a significant portion of the mo-
mentum and energy upstream of the second droplet. As a result, the further reduction in
transport rates from the second to the third droplet becomes very limited.

(4) Usually, the second droplet has the lowest drag coefficient since it interacts with
both neighboring droplets. However, the difference in transport rates between the second
and the third droplets is not significant.

(5) The effect of D23 on the behavior of the first droplet is insignificant. However,
depending upon the values of D12 as well as D23, the effect of D23 on the behavior of the
second droplet is not negligible.

(6) The correlations for heat transfer and droplet dynamics have been developed [7]
and are applicable to droplet spray calculation.

6. LOX vaporization at subcritical conditions

The second task involves the axisymmetric calculation of an isolated LOX (liquid
oxygen) droplet. A detailed analysis of LOX droplet heating and vaporization and the
mixing of the oxygen and fuel vapors in a high temperature, low pressure (10 - 20 atm),
convective environment has been conducted. This problem features very complex property
calculations along with very high transfer number ( 0 0(100) ) and high density ratio. The
variation of liquid-phase density with temperature is significant. The LOX may experience
the thermal expansion during the transient heating and the surface moving velocity cannot
be neglected. In order to account carefully for unsteadiness due to density variation, the
variable liquid-density with primitive variables (V,, V, pi and pl) are employed. Note
that in previous codes [21,6], the liquid-phase momentum equations are formulated by a
stream function-vorticity approach. The modifications of the code to adapt the primitive
variables for the liquid phase as well as to employ more accurate interface conditions have
been developed.

The general considerations include : the effects of variable thermophysical properties,
real gas behavior, transient heating and internal circulation of liquid, deceleration of the
flow due to the drag of the droplet, boundary-layer blowing, and moving interface. An
implicit finite-difference scheme has been developed to solve the complete set of Navier-
Stokes, energy, and species equations. Some preliminary results have been presented in
Chiang and Sirignano [22]. The results are presented for the low pressure case. The
interesting phenomena due to the large surface blowing and surface boiling are examined.

We have learned in all calculations that the LOX droplet surface very quickly reaches
the boiling temperature, which is about 120 K for the case of 10 atms ambient pressure.
However, the droplet core remains cold since the conductivity is low and, at the early time,
the circulation strength is not strong enough to convect much energy. All the available
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heat transfer from the gas phase is used to heat the surface and is also utilized for the
latent heat of vaporization. The surface boiling persists throughout the droplet lifetime.
The very rich and cold oxygen vapor surrounding the droplet is depicted in Figure 17.
The large gradient occurs at the front stagnant region as we expect. The LOX droplet
would require much of energy for the heat of vaporization rather than for the heating the
internal fluid. As a result, the transient droplet heating is responsible for the unsteady
thermal behavior of the LOX droplet. The high surface blowing velocity has a significant
effect on the flow structure and modifies the flow separation angle and wake length, etc.
The drag coefficient, Nusselt and Sherwood numbers are reduced to values below their
corresponding stagnant values. A copy of the preprint [22] describing this research is
attached as an addendum to this report.

7. LOX vaporization at near-critical or supercritical conditions

Most rocket engine combustors are operated in the very high pressure domain where
LOX droplets may vaporize at near or even super-critical conditions. Hence, the cur-
rent objective of this task is concentrated on an understanding of fundamental transport
processes underlying high pressure LOX droplet vaporization.

The extension of the present low pressure model to cover the pressure range from the
subcritical region to the supercritical region is currently underway. The solubility of the
fuel vapor in the liquid phase makes a multicomponent droplet formulation necessary.
Also, a new technique is needed to compute mass fraction and thermophysical properties
at gas/liquid phase equilibrium and to account for the droplet regression rate due to
vaporization as well as phase change across the critical surface, with continuous density
and temperature gradients at the surface.

Several modifications associated with physical behavior have been conducted to extend
the previous low pressure LOX droplet vaporizing model to deal with the ambient pressure
in the range from the near-critical region to the supercritical region. They are summarized
below.

1. A comprehensive calculation of variations of thermophysical properties with respect
to temperature for each species component is performed. The high pressure correction,
the mixing rules to evaluate the thermodynamic properties, and the quantum gas behavior
of hydrogen vapor are considered. The gas-phase and liquid-phase properties tables have
been constructed in order to evaluate the thermodynamic properties efficiently by a two-
variable linear interpolation.

2. The real gas effect in the high pressure case is taken into account by incorporating a
compressibility factor in the gas-phase equation of state. A modified Redlich-Kwong equa-
tion of state with the mixing rules of Chueh and Prausnitz are employed. The enthalpy
of vaporization is derived from the equation of state by using the fugacity equation.
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Since the swelling effect of the LOX vaporization is significant, a primitive variable
approach is formulated to analyze the internal motion and thermal and mass transport
within the droplet.

3. The solubility of the fuel vapor in the liquid phase has been considered by a
multicomponent formulation. The principle of equal temperature, pressure, and fugacity
of both phases for phase equilibria is used to compute the surface mass fraction of species
for gas and liquid. A brief description of the new phase equilibrium conditions at the
droplet interface is given below.

Thermodynamic equilibrium of a mixture gives

Te = Tg, p, = -p, f! = f? (23)

which ultimately presents the following system of equations to be solved:

2 2 o(Xo ,x 2 ,T,P) = x- o x 0 o9 (x, 2,T,P)
xt x , 2 (xo,42 ,T,P) = x x (xO , A 2 ,T,P) (24)

(25)

A phase equilibrium diagram and enthalpy of vaporization from this analysis is given
in Figure 18.

The single-component interface equations are replaced by the following interface equa-
tions for a multicomponent fluid.

Conservation of species:

rYi - pD a Y] r+=[n,,Yi - pDia Y]r (26)

Conservation of energy:

- k+T k akT + h"2- piar 10 (AHV,02 - F,2
o r jr r ýr r r

+ rhnAH,H, (27)

where rhv = p(V -

4. A new technique is being tested to locate the gas/liquid interface and to compute
the regression rate due to vaporization as well as phase change across the critical surface,
with continuous density and temperature gradients at the surface.
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A calculation is performed to study vaporization behavior before the droplet reaches
the critical mixing state. The changes of properties at the interface occur very rapidly
during the droplet vaporization. Diffusion length scales are reduced at the elevated pres-
sure. The transport rates are faster than those in the low pressure case; hence, the droplet
lifetime is shorter. As a result, a very small time step is mandatory to ensure accuracy.
Figure 19 indicates that radius increases with time due to the swelling effect of droplet as
well as the condensation of vapor. The reduced enthalpy of vaporization also contributes
to the fast vaporization of the droplet. The enthalpy of vaporization shown in Figure 20
is significantly reduced from the conventional "latent heat". A remarkable condensation
of gas-phase vapor occurs at the early droplet lifetime. The vaporization begins as the
surface temperature increases.

Figure 21 presents the variations of compressibility factors (averaged around the az-
imuthal direction) for the gas and liquid phases at the interface. When the two com-
pressibilities are equal, the critical mixing state is reached. The apparent trend of two
phases merging into one continuous phase is shown. Since the critical mixing state highly
depends on temperature and mass fraction, the droplet surface at different locations will
reach the critical mixing state at different times. The diffusivity for the liquid phase is,
in general, two orders-of-magnitude less than that of the gas phase; as a result, most of
the diffusing vapors are concentrated in the boundary-layer region at the interface.

Various kinds of approaches and numerical schemes and algorithms are under exami-
nation to address the following difficulties occurring during the computation.

1. The surface temperature rises very quickly for the high pressure case. Since the
liquid-vapor equilibrium conditions require a separate iterative-scheme to solve for surface
mass fraction and temperature, we have temporarily de-coupled the momentum equations
from the energy and species conditions and solved them sequentially. We found that the
present method tends to overestimate the blowing velocity at the early droplet time. A
relaxation factor is hence applied to decrease artificially the vaporization rate during the
early period.

2. An appropriate numerical boundary condition at the droplet center must be devel-
oped for the present cylindrical-coordinate velocity formulation and spherical-grid system.
Otherwise, local errors occur.

3. Some information about thermophysical properties at the critical state is still being
sought.

4. The entire calculation has been very time-consuming. Especially, computation of
the compressibility factor (which requires an iterative procedure to solve a cubic polyno-
mial) utilizes a large portion of computing time. We are pursuing alternative strategies
(i.e. by a linear interpolation method to fetch the values from existing tables; however, it
would require huge memory storages) for simplification of this part of the calculation.

Currently, we have advanced our high-pressure LOX model to deal with the vapor-
ization at supercritical conditions. The major difficulties in the calculation are : 1) the
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formulation of boundary conditions, especially to trace the location of the "droplet inter-
face", 2) the property calculation of the "gas/liquid puff" at the interface. Basically, we
have developed two modelling approaches, which are currently undergoing investigation,
to handle the interface conditions. Here, we briefly describe our strategies step-by-step
to make calculations at supercritical conditions.

(1) Determine the critical mixing temperature with respect to various pressure levels.
The Redlich-Kwong equation of state with the mixing rules of Chueh and Prausnitz is
employed for vapor-liquid equilibria calculation for H 2/0 2 system. The critical mixing
temperature is determined when the compressibilities (or mass fractions of a component)
at both phases reach the same value. Figure 22 demonstrates that the critical mixing tem-
perature and oxygen mass fraction at the interface reduce, while compressibility increases
as pressure increases.

(2) The droplet "pseudo-interface location" is determined by the critical mixing tem-
perature. Note that the pseudo-interface will slightly deviate from its original spherical
shape due to the convective effects in both gas and liquid phases. In calculating the
vaporization rate, it is still assumed that the droplet remains spherical (by the use of an
averaged radius).

(3) The first approach assumes that there is no gas/liquid interface. The flowfield
is continuous from the gas phase to the liquid phase and the problem is solved as a
single-phase problem. The solutions strongly depend on the property evaluation at the
interface.

(4) Since there is limited availability of the critical point thermo-physical 'properties
data in the literature, we assume that all thermo-physical properties are also continuous
from the liquid to the gas phase. The consideration of singular behavior of some thermo-
physical properties is excluded in the present study. A second-order linear interpolation
scheme is employed tu obtain the values at critical mixing state. However, we have
learned that the direct calculation of density using this approach will lead to a failure in
the calculation of vaporization rate. Hence, the density is obtained from compressibility
relations. The variation of mass with respect to time is shown in Figure 23. After an
early condensing period, the droplet reaches the critical mixing state and the evaporation
rate increases dramatically beyond the critical point.

(5) Another modelling approach assumes that there exists a spherical "pseudo-interface."
The gas and liquid phase equations are solved separately, and the solutions are matched
at the interface. In this approach, constant-temperature (at its critical mixing state) and
constant-mass-fractior. interface conditions are employed. The shear (or normal) stress
conditions are applied even though the surface tension vanishes at the interface. \Ve still
suffered some numerical difficulties in this approach and the preliminary numerical results
are not comparable to the existing data.

In parallel to the high-pressure LOX calculation, we are modifying the previous pro-
gram for the interactive hydrocarbon-fuel droplet to take LOX or hydrogen droplet va-
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porization into account. The modifications include: (1) a primitive variables approach for
the liquid phase, (2) thermodynamics property evaluations for oxygen and hydrogen fuel,
and (3) more accurate formulation of the interface to include droplet surface expansion.

We currently are addressing several technical difficulties listed below:
1. There is a need for a suitable initial variable profile to start the calculation. The

pressure field (and mass residual sum) between two droplets could destroy the solutions
since a large magnitude of vaporization occurs if droplets suddenly encounter an inappro-
priate temperature profile at the beginning of the simulation.

2. The computation will be very costly. The whole primitive variables calculation
for a vaporizing LOX or hydrogen droplet requires a very small time step to guarantee
a converged solution at the droplet interface. In addition, the grid generation routine
requires more iterations to keep track of the rapidly recessing droplet surface.

We will modify the current computational model to improve the numerical stability
problem. Also, a simple formulation of droplet vaporization may be constructed in order
to conserve our very limited CRAY Y-MP b,- -. More detailed thermophysical property
information for a hydrogen droplet is ci -rcanuy being compiled.
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N, x N 2 x NV3  CDP CDV CD C0

20 x 21 x 21 0.706 0.951 1.657

30 x 31 x 31 0.683 0.934 1.617

40 x 41 x 41 0.676 0.929 1.605 1.58

Table 1. Drag coefficients as a function of grid density at Re = 50,

where * denotes the data from Roos & Willmarth (1971)

and also Clift et al. (1978).

N 1 x N2 x N 3  Pof Pr 0, 0.

20 x 21 x 21 0.611 -0.1088 136.53

30 x 31 x 31 0.606 -0.0982 138.10

40 x 41 x 41 0.604 -0.0954 138.63 139.3

Table 2. Pressure at the front and rear stagnation points and the

separation angle measured from the front stagnation point

as a function of grid density at Re = 50, where * denotes

the data from Clift et al. (1978).



N, x N2 x N3  CDP CDV CD CB

20 x 21 x 21 0.555 0.593 1.148

30 x 31 x 31 0.532 0.582 1.114

40 x 41 x 41 0.524 0.581 1.105 1.09

Table 3. Drag coefficients as a function of grid density at Re = 100,

where * denotes the data from Roos & Willmarth (1971)

and also Clift et at. (1978).

Nx N 2 x N 3  P01  Po, 0t 0-

20 x 21 x 21 0.555 -0.0924 124.24

30 x 31 x 31 0.555 -0.0819 125.74

40 x 41 x 41 0.554 -0.0789 126.25 126.5

Table 4. Pressure at the front and rear stagnation points and the

separation angle measured from the front stagnation point

as a function of grid density at Re = 100, where * denotes

the data from Taneda (1956) and Clift et al. (1978).



Gas Liquid

N1 x N2 x N 3  Nil x N21 x N 31  CDp CDV CD CL

20 x 11 x 32 10 x 11 x 32 0.542 0.586 1.128

30 x 15 x 48 15 x 15 x 48 0.520 0.573 1.092

40 x 21 x 64 20 x 21 x 64 0.511 0.571 1.081 1.08

Table 5. Drag coefficients as a function of grid density at Re = 100,

where * denotes the data from the correlation.

of Rivkind & Ryskin (1976)

Gas Liquid

N1 x N 2 x N3 Nil x N 21 x N3 1 01, 02,

20 x 11 x 32 10 x 11 x 32 126.81 146.50

30 x 15 x 48 15 x 15 x 48 127.70 150.13

40x21x64 20x21x64 127.74 151.20

Table 6. Angles at which the surface vorticity changes its sign and

the surface velocity is zero as a function of grid density

at Re = 100, where the angles are measured from

the front stagnation point.



Parameter Value

Initial Reynolds number in gas phase 100

Relative velocity of droplet, m/s 25

Free stream temperature, K 1250

Combustor pressure, atm 10

Prandtl number in gas phase 0.74

Prandtl number in liquid phase 8.53

Schmidt number in gas phase 2.33

Molecular weight of oxidizer, kg/kmol 29.0

Y 1, ular weight of fuel (n-octane), kg/kmol 114.2

.roplet initial temperature, K 300

Viscosity ratio (liquid to gas) 10.5

Density ratio (liquid to gas) 247.9

Specific heat ratio (liquid to gas) 1.89

Latent heat, cal/g 72.5

Table 7. Physical parameters used in the calculation
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13. CD for the Lead Droplet, Case 3; 14. CD for the Second Droplet, Case 3;

15. CD for the Third Droplet, Case 3; 16. CD for an Isolated Droplet;
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Three-dimensional flow over two identical (solid or liquid) spheres which are held
fixed relative to each other with the line connecting their centres normal to a uniform
stream is investigated numerically at Reynolds numbers 50, 100, and 150. We
consider the lift, moment, and drag coefficients on the spheres and investigate their
dependence on the distance between the two spheres. The computations show that,
for a given Reynolds number, the two spheres are repelled when the spacing is of the
order of the diameter but are weakly attracted at intermediate separation distances.
For small spacing, the vortical structure of the near wake is significantly different
from that of the axisymmetric wake that establishes at large separations. The
partially confined flow passing between the two spheres entrains the flows coming
around their other sides. Our results agree with available experimental and
numerical data.

1. Introduction
Flow past droplets and solid particles are important in many natural and

engineering applications such as air pollution, combustion systems, and chemical
processes. Many investigations have considered the interactions between droplets or
particles and the surrounding fluid by analytical and numerical methods. For'
sufficiently low or high Reynolds numbers, a theoretical analysis can be performed
using singular perturbation expansions which involve linearization or the boundary-
layer approximation. For flows at intermediate Reynolds numbers, which are most
common in engineering applications, it is necessary to solve the Navier-Stokes
equations numerically.

The majority of the published numerical studies for intermediate Reynolds
numbers have focused on flows past a 3ingle particle and are thus relevant only at low
particle concentration. In regions of large concentration, the drag coefficient is
significantly different from that of an isolated particle at the same Reynolds number,
and the lift and moment (torque) coefficients have finite values. In order to
understand the behaviour of a particle in a large-concentration region, studies of the
interactions amongst particles are required. Unfortunately, in practice, the spacial
arrangement of particles or droplets in a regon of large concentration is quite
complex and subject to uncertainty, and calculations involving the entire region are
at present not feasible. In order to develop statistical approaches, information about
individual droplet or particle interactions is needed.

The study of droplet or particle arrays, particularly in flows at intermediate
Reynolds number, is relatively new (Patnaik 1986). A particle array as discussed by
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Sirignano (1983) consists of a few particles in a well-defined geometrical arrangement
or a large number of particles in a periodic configuration. These arrays, although
artificial, can provide information on particle-particle interactions and their effects
on the ambient conditions in the vicinity of the particle. The simplification in the
geometry allows a detailed and rigorous analysis.

Tal, Lee & Sirignanx (1983) studied the hydrodynamics and heat transfer in
assemblages of solid spheres in a steady flow at Reynolds number 100 (based on the
particle diameter and relative velocity). Their method took advantage of the periodic
nature of an infinite array of spheres. They considered several spheres in tandem, and
found a trend of decreasing drag coefficients in the streamwise direction. Tal, Lee &
Sirignan* (1984) also studied the interaction of two solid spheres in tandem in a
steady uniform flow at Re = 40 for two different spacings using bispherical
coordinates and indicated that the drag coefficient of either sphere is always less than
that of a single isolated sphere and that the reduction is much greater for the
downstream sphere.

Patnaik (1986) investigated the interaction of two vaporizing droplets in tandem
at Re = 50 and 100 for interdroplet spacing equal to 4.25 diameters using the
downstream solution of the lead droplet as the inflow conditions for the downstream
droplet. He found that for both Reynolds numbers, the drag coefficient of the trailing
droplet is lower than that of the leading droplet.

Raju & Sirignano (1990) studied the interactions between two moving vaporizing
droplets in tandem at 50 •< Re < 200 for a range of spacings and droplet radii ratios.
They found that the drag coefficients for both droplets are less than that of a solid
sphere and, for the same Reynolds number, the trailing droplet has lower drag.
Chiang & Sirignano (1991 a, b) extended this study to include variable properties and
two and three droplets. With three droplets, the difference in drag coefficients
between the second and third droplets is much smaller than for the first and second
droplets.

All of the above studies employed axisymmetric calculations. Recently, some
numerical studies have been performed for three-dimensional flows over a single solid
sphere. Dandy & Dwyer (1989) obtained three-dimensional numerical solutions for
steady, uniform shear flow past a fixed, heated spherical particle over a range of
Reynolds numbers (0.1 < Re z< 100) and dimensionless shear rates (0.005 •< a •< 0.4).
They found that at a fixed shear rate, the lift coefficient is approximately constant
over a wide range of intermediate Reynolds numbers, and the drag coefficient also
remains constant when normalized by the drag for a sphere in uniform flow.
Tomboulides, Orszag & Karniadakis (1991) performed a numerical study of three-
dimensional flow past a sphere using a spectral element method for 30 4 Re s< 1000
and discussed steady axisymmetric states and unsteady states with three-
dimensional vortex shedding.

Three-dimensional flow interactions between droplets or particles at finite
Reynolds number have not yet been studied. As a first step towards understanding
the three-dimensional interactions in large concentration of particles, we investigate
flow interactions between two identical (solid or liquid) spheres which are held fixed
side by side against the uniform stream at Reynolds numbers 50, 100, and 150. We
determine the effects of three-dimensional interactions on the lift, moment, and drag
coefficients as a function of the dimensionless distance between the two spheres and
Reynolds number. Some novel phenomena in the near wake are discovered as the gap
between the two spheres decreases. Our results are also compared with available
experimental and numerical data.
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FIGtr2 1. Flow geometry and coordinates.

2. Problem statement and numerical solution

We consider a steady three-dimensional incompressible laminar flow of a
Newtonian fluid past two identical (solid or liquid) spheres held fixed, with the line
connecting the sphere centres normal to a uniform stream, as shown in figure 1; do
denotes the distance, normalized by the sphere radius, from the sphere centre to the
x, y symmetry plane between the two spheres. Far upstream, the flow is uniform with
constant velocity U.1 i parallel to the x-axis. Two symmetry planes are noted in figure
1: the (x, z)-plane containing the centres of the two spheres and the (x, y)-plane
located at z = -do midway between the sphere centres.

We note that asymmetry of the flow paat neighbouring bluff bodies might occur
at lower Reynolds number than that of the frst temporal instability for a sihgle
body. An example is the flow past two cylinders where flow asymmetry would occur
well before the first temporal instability for a single cylinder. In contrast, we expect
that, for the flow past two spheres, flow asymmetry would occur nearly'
simultaneously with the temporal instability since the interaction between the two
halves (each containing one sphere) of the flow field should be stronger for cylinders
than for spheres. That is, the flow between the two spheres is less constrained than
the flow between the two side-by-side cylinders.

Two coordinate systems are used in our formulation: the Cartesian coordinates (x,
y, z) and the non-orthogonal generalized coordinates (9, 1, ý). The origin of the former
coincides with the sphere centre; and • is the radial, I the angular, and ý the
azimuthal coordinate. Owing to symmetry, the physical domain is reduced to one
quarter of an ellipsoid-like space.

The domain of the external flow is bounded by I <, < , 1 S2 ?< ., I , V
where I = 1 and NS correspond. respectively, to the sphere surface and the far-field
boundary surrounding the sphere; n = 1 and S. denote, respectively, the positive
axis and the negative _-axis; " = 1 and)S3 refer, respectively, to the (x, -)-plane in the
positive x-direction and the (x. -)-plane in the negative x-direction.

The domain of the internal flow is 1 < , I < Y ' ,. = I and

XV correspond to the centre and the surface of the sphere, respectively. 1, = I and
Y, denote the positive :-axis and the negative zz-axis, respectively. -= 1 and SV refer
to the (x, z)-plane in the positive x-direction and the (x, z)-plane in the negative
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x-direction, respectively. Within the liquid sphere, - = constant are a family
of concentric spherical surfaces. Uniform spacing (6- 371/= = = 1) is used, for
convenience, for the generalized coordinates in both flows.

The non-orthogonal generalized coordinate system of the external flow can be
easily adapted to three-dimensional arbitrary gcometries. We solve the continuity
equation and the time-dependent Navier-Stokes equations and relax them to the
steady-state solution, as will be discussed in detail in 12.2.

"2.1. Governing equations and boundary conditions

Since one of our goals is to study the flow interaction with liquid spheres, we present
the equations for the flows inside and outside the spheres. However, for flow
interactions with solid spheres, only the external flow equations are solved. The
continuity and momentum equations inside and outside a sphere and the boundary
conditions are non-dimensionalized using the sphere radius a; as the characteristic
length and U. as the characteristic velocity:

external flow

v.V=0, (1)

DV 2DI = RveeV V; (2)

internal flow

V. Vt = 0, (3)

D V, 2 -V 2 V
D t = + R e, 1. (4)

The governing equations are written with respect to the generalized coordinates
(6,,1, ,), which allows a three-dimensional body of arbitrary shape to be treated. The
numerical integration is performed using a cubic computational mesh with equal
spacing (8=&I = 6 = 1) (Anderson, Tannehill & Pletcher 1984).

The conditions at the interface, 6 = 1 or 6 = V,,, are derived by requiring
continuity of the shear stresses and tangential velocities. Because no fluid is allowed
to cross the surface of the liquid sphere, the normal velocities at the interface are zero
in both flows. An interface condition for the pressure is obtained from the momentum
equation. Since the interface is always spherical, it is more convenient to cast these
conditions in terms of spherical coordinates (r, 0, 0):

'r,,., = l rd, s., (5)

r.,• =TI r.•a• (6)
p , V t.o 0. v •., (7 )

V., - Vi.. = 0, (9)

a = e+ "[ (r - 9-- Vcot6- sin0 a:LJ (10)

where the subscript s denotes the surface of the liquid sphere. For the solid-sphere
case, the no-slip condition is enforced on the sphere surface.
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The external flow boundary- conditions are:

p=0, u= 1, '=0, w=0 at Y'=Y exceptat:--d 0 , (11)

ep au ev
-- -= - =0, w=0 at z=-do, (12)

Lp au aw
-- �---- 0,=0 v=O at I=1 and X., (13)

Lp au C aw
- -,--- o v=0 at =1 and NV3, (14)

where u, v, and w are the velocities of the external flow in the x-, y-, and z-directions,
respectively. p is the pressure, and the subscript I denotes the internal flow.
Equations (12) and (14) correspond, respectively, to the symmetry conditions in the
x, y symmetry plane between the spheres and the x, z symmetry plane containing
the centres of the spheres. Equation (13) expresses the no-flux boundary condition
for p, u, and w on the axes I - 1 and I = X2, and zero v-velocity in the x, z symmetry
plane containing the two axes.

The internal flow boundary conditions are

L,= = . =0o, V=o at 91=1, (15)

_ a g a__ a=,
LPh • =-w1=0, vL=O at qj=1 and N., (16)
e~j all, alb '2 (6

L, - .= ., o, ,,=0 at ý,=1 and N (17)

where (15) and (16) correspond, respectively, to the no-flux boundary conditions at
the centre of the droplet and on the axes 1, = I and 4V2, and zero v,-velocity in the-
x, z symmetry plane containing the two axes. Equation (17) prescribes the symmetry
condition on the x, z symmetry plane containing the centres of the spheres.

The dimensional drag, lift, and moment coefficients are evaluated from

F= fS -pn.idc +fsn.f.idS, (18)

FL =fS -pn.kdbS+fsn..kdW, (19)

M = fS xr dS, (20)

where S denotes the surface of the sphere, n is the outward unit normal vector at the
surface, r is the position vector from the centre of the sphere, and - is the viscous
stress tensor. Equations (18)-(20) are evaluated on the side of the external flow. The
lift force is assumed positive when it is directed toward the positive z-axis. Owing to
symmetry, only the y-component of the moment is non-zero and is assumed positive
in the counter-clockwise direction.
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Non-dimensional coefficients of drag, lift, and moment are defined respectively as

CD = FD(ýU'ag), (21)

C, = F,1/(:Lj ra'), (22)

= M.j/(ýpL nra',. (23)

2.2. Numerical solution

We have developed a three-dimensional implicit finite-difference algorithm to solve
simultaneously the set of discretized partial differential equations. The method is
based on an Alternating-Direction-Predictor-Corrector (ADPC) scheme to solve the
time-dependent Navier-Stokes equations. ADPC is a slight variation of Alternating-
Direction-Implicit (A.DI) method. It is first-order accurate in time but is effective
and implemented easily when embedded in a large iteration scheme (Patnaik 1986).
The control volume formulation is used to develop the finite-difference equations
from the governing equations with respect to the generalized coordinates (•, '1, •).
One of the advantages of the control volume formulation is that all dependent
variables are conserved over a single control volume, and hence the whole domain
regardless of the grid fineness. An important part of solving the Navier-Stokes
equations in primitive variables is the calculation of the pressure field. In the present
work, a pressure correction equation is employed to satisfy indirectly the continuity
equation (Anderson et al. 1984). The pressure correction equation is of the Poisson
type and is solved by the Successive-Over-Relaxation (SOR) method.

The overall solution procedure is based on a cyclic series of guess-and-correct
operations. The velocity components are first calculated from the momentum
equations using the A.DPC method, where the pressure field at the previous time step
is employed. This estimate improves as the overall iteration continues. The pressure
correction is calculated from the pressure correction equation using the SOR method,
and new estimates for pressure and velocities are obtained. This process continues
until the solution converges at each time step. For the flow past liquid spheres, the
same procedure is performed in the flow inside the sphere. The governing equations
of motion in each flow are solved in an interactive sequence through the interface
boundary conditions until convergence is achieved for each time step of the
calculation.

The generation of the computational grid for the external multi-sphere flows is an
essential part of the solution procedure. We generate the three-dimensional grid
efficiently by choosing the outer boundary of the physical domain to be axisymmetric
about the line connecting the centres of the two spheres and constructing an
axisymmetric grid. The axisymmetric grid is generated on the (ý, 17)-plane including
the line that connects the centres of the two spheres and by using a hybrid method
of algebraic and differential equation methods. First, we choose the outer boundary
of the computational grid as the x, y symmetry plane and an incomplete ellipse whose
centre is located at the centre of the sphere, as shown in figure 1. We then generate
a family of quarter-ellipses on the right side of the domain, another family of quarter-
ellipses on the left side, and also a family of straight lines emanating from the centre
of the sphere. Grid density is controlled by the stretching function developed by
Vinokur (1983). This is followed by solving the quasi-linear elliptic system of
differential equations using the SOR method with a few (not more than two)
iterations in order to smooth the arid lines generated by the algebraic method. In
figures 2 (a-c), we present a cross-section of the three-dimensional grid at d, = 21, 10,
and 3.
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(b)

(a) I I\

(C)

FIGumz 2. Cross-section of the three-dimensional grid system for (a) do = 21; (b) do = 10;
(c) do = 3.

NV X-2X 3  CDP Co, C ,

Re =50
20 x 21 x 21 0.706 0.951 1.657
30 x 31 x 31 0.683 0.934 1.617
40 x 41 x 41 0.676 0.929 1.605 1.58

Re = 100
20 x 21 x 21 0.555 0.593 .1.148
30 x 31 x 31 0.532 0.582 1.114
40 x 41 x 41 0.524 0.581 1.105 1.09

TB.Bz 1. Drag coefficients as a function of grid density at Re = 50 and 100 where * denotes the
data from Roos & Willmarth (1971) and also Clift et al. (1978).

3. Results and discussion

In §3.1, we test the accuracy of the full three-dimensional solution procedure by
predicting the axisymmetric flow over a single (solid and liquid) sphere. In § 3.2, we
discuss the three-dimensional interactions between two solid spheres, and in § 3.3, we
examine the three-dimensional interactions between two liquid spheres.

3.1. Flow over a single sphere

We discuss the flow generated by an impulsively started solid sphere in a quiescent
fluid at two Reynolds numbers: 50 and 100. The time-dependent solution converges
asymptotically to a steady state, which is in excellent agreement with available
experimental data and correlations as shown in tables 1 and 2. Table 1 lists the drag
coefficients as a function of the computational grid density at Reynolds numbers 50
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(a) (bi- - -

FIGL'aE 4. Velocity vector fields of (a) external flow; (b) internal flow for the axisymmetric flow
past a liquid sphere at Re = 100.

The axisymmetric test-run for a solid sphere at Reynolds number 100 with the
40 x 41 x 41 grid required a dimensionless time step of At = 0.002 and a total time of
3.75 Cray Y-}[P/8-64 cpu hours. Each time step takes about 1.8 cpu seconds.

We also solved the flow generated by an impulsively started liquid sphere in a
quiescent fluid, and the results were in good agreement with available numerical
studies. Figure 3 (a, b) shows the steady-state velocity vector distributions of the flow
past a liquid sphere with viscosity ratio of 25 and density ratio of 300 (internal to
external fluid) at Reynolds number 50. We observe a closed-streamline wake
detached from the liquid sphere, and thus no secondary recirculating flow is found
in the liquid phase (Rivkind & Ryskin 1976; Clift et al. 1978). In figure 4(a, b) we
show the velocity vector distributions for the same parameters as above except that
the Reynolds number is 100. It is interesting to note that a second circulatory flow
develops in the liquid-sphere stern region. This behaviour was observed in an earlier
study by Rivkind & Ryskin (1976) where a stream function-vorticity formulation
was employed. Rivkind & Ryskin (1976) indicated that when the density ratio is
much greater than the viscosity ratio, i.e. the Reynolds number inside the liquid
sphere is much greater than the Reynolds number outside, a second circulatory flow
possibly occurs in the liquid-sphere stern region. The axisymmetric test run for the
liquid sphere required half the time step for the solid sphere and was about 3.4 times
slower because of the numerical interaction between the internal and external flows.

For the interactions between two spheres, an ellipsoid-like domain is chosen in
order to take into account the interactions when the two spheres are far away from'
each other. As shown in figure 1, a longer outer boundary r., 25 is chosen in the z-
direction, and r. = 21 is chosen in the o-direction, where o- (x2 + y')i. The results
using the above ellipsoid outer boundary for a single sphere were identical in the
steady axisymmetric flow calculations to those using the spherical outer boundary.

The results of the 30 x 31 x 31 grid differ by only 0.8% in the drag coefficients and
0.4 % in the separation angles from those of the 40 x 41 x 41 grid as shown in tables
1 and 2. The percentage difference was calculated as follows. Let the result of the
30 x 31 x 31 grid be S , and the result of the 40 x 41 x 41 grid be S. Then, the
percentage difference is (S,-S.)/S1 . Thus, we chose the medium-size grid
30x31 x31, and 15x31 x31 inside the liquid sphere, for the following of
calculations. A typical run for the solid sphere with the 30 x 31 x 31 grid required 0.8
cpu hours on the Cray Y.-MP/8-64: the liquid sphere run with the same grid required
2.7 cpu hours. 15 runs were made for each Revnolds number to cover the range of
1.5 < do < 25.

We did not perform calculations for Reynolds number higher than 150, because it
is known that the wake becomes unstable at a Reynolds number in the range of
130-220 for a single sphere (Taneda 1956: Goldburg & Florsheim 1966: Roos &
Willmarth 1971; Nakamura 1976: Kim & Pearlstein 1990) and our present goal is to
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x. y symmetry plane

(b(

x. y symmetry plane

(b)

D E

FmotrRz 5. Sketch of typical streamlines over one of the two solid spheres in the principal plane
(x,j-plane) at Re =f 100 for (a) axisymmnetric flow; (b) d0 =f 2; (c) di, - 1.5.

obtain steady-state solutions. For the solution of a flow including the three-
dimensional unsteady wake, a complete computational domain (i.e. encompassing
the two spheres without a symmetry plane) and periodic boundary conditions in

c-direction will be necessary.

3.2. Interactions of two solid spheres

3.2.1. Flow stru~ture

In order to illustrate better the fluid motion, we consider the flow field in the (x, z)-
plane of symmetry, which is defined as the principal plane, where the narrowest
path between the two spheres occurs, hence the strongest interactions between them.

Figure 5.a) displays a sketch of the actual streamlines around a single sphere in the
principal plane at Reynolds number 100. As expected, two identical counter-rotating
vortices (corresponding to a single vortex ring) exist di the wake, and the
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downstream stagnation point is located on the axis of symmetry. Line I-II
connecting the front and rear stagnation points in the standard axisyimmetric flow
over a single sphere will be used as a reference line: we refer to the region above this
line as the 'top' or 'upper' region and that below as the 'bottom' or 'lower' region.

Figure 5 (b) displays a sketch of the actual streamlines around one of the two
spheres in the principal plane at Reynolds number 100. The two spheres are
separated by a distance do = 2. Owing to the blockage of the flow in the gap between
the two spheres, the streamlines diverge away from the x, y symmetry plane (located
at z = -do) as they approach the front stagnation region. Thus, the stagnation
streamline of the single-sphere case (I-S, in figure 5a) no longer intersects the sphere,
and another streamline closer to the symmetry plane meets the sphere to form the
new front stagnation streamline at point P. As a consequence, the fluid particles
move faster in the lower left region around the sphere than in the upper left region,
and this causes the pressure in the lower left region to be lower than that in the upper
left region. The resulting pressure difference between the upper and lower left regions
is higher than that between the bottom of the sphere and the narrow path. This
pressure imbalance, which will be discussed in §3.2.2, causes repulsion of the two
spheres. The contribution of shear stress differences to the repulsion will also be
discussed in §3.2.2.

Figure 5(b) shows an interesting streamline pattern in the wake region. Two
counter-rotating eddies exist in the wake but their configuration is quite different
from that for axisymmetric flow. The lower eddy is formed by the fluid separating
on the lower portion of the sphere as in the case of axisymmetric flow. The upper
eddy is not formed by the fluid separating on the upper portion of the sphere, but
rather by the fluid turning around the lower eddy and being entrained by the upper
flow. This upper eddy is detached from the sphere. A portion of the fluid moving
around the bottom of the sphere passes between the detached upper eddy and the
sphere. The streamline A-B encompassing the upper eddy intersects itself, and the
intersection point, C, designated as the downstream stagnation point, is shifted,
toward the x, y symmetry plane. Both eddies are smaller than those of the
axisymmetric flow. These new features can be explained as follows. The pressure
above the upper wake is less than that below the lower wake owing to the increased
acceleration of the fluid in the narrow path between the two spheres (as will be shown
in figure 7). Thus, the fluid particles turning around the lower eddy are pushed into
the upper region of the wake. The pressure distribution around the sphere will be
discussed further in §3.2.2.

Figure 5 (c) shows a sketch of the actual streamline pattern at Reynolds number
100 for the case d0 = 1.5. The shifting of the front stagnation streamline and
stagnation point toward the x, y symmetry plane are more obvious here than in the
previous case of do = 2. The significant difference is in the wake region where both the
upper eddy and downstream stagnation point vanish. Fluid particles separating on
the upper portion of the sphere move downstream without returning (streamline
D-E). On the other hand, fluid particles turning around the lower eddy move into the
upper region of the wake until they reach'near the upper separation point, D. and
then move downstream in an S-shaped path (streamline F-G) without returning to
form an eddy. The lower eddy shrinks as the two spheres become closer, and the
pressure difference between the top and bottom of the wake is larger.

It is interesting to examine the changes in the separation region at the sphere
surface for the cases do = 2 and 1.5. More specifically, we examine the behaviour of
the circle of intersection of the wake and the sphere. Our results show that the circle
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_. - :- : - -- :-

FIGuE 6. Velocity vector fields over one of the two solid spheres in the principal plane
corresponding to (a) fizure 5(b), do = 2; (b) figure 5(c), do = 1.5.

is slightly shifted toward the x, y symmetry plane due to the decreased pressure in the
gap region with respect to that in the wake lower region. This shifting produces
separation angles at the top, middle, and bottom of the sphere with values of 123.10,
126.5', and 126.2° respectively for the case do = 1.5, where the angles are measured
from the front stagnation point of the axisymmetric flow case. This is in contrast
with an angle of 125.7° at all positions for a single sphere.

Figure 6 (a) shows the computed velocity vector field corresponding to figure 5 (b),
d0 = 2. The velocity vectors upstream of the front stagnation point, S1, for
axisymmetric flow point downwards away from the x, y symmetry plane. This
indicates that the front stagnation point (P in figure 5b), is shifted toward the x, y
symmetry plane. Similar behaviour occurs at the rear stagnation point (Q in figure
5b). Figure 6(b) shows the computed velocity vector field corresponding to figure
5(c), do = 1.5.

One of the advantages of the velocity vector plot is that it shows clearly ther
relative magnitude of velocity in the flow field, e.g. the smaller velocity in the wake
region compared to that outside the wake is seen in figure 6 (a, b). However, it is
difficult to obtain streamlines directly from the tangents of the velocity vector plot.

A stream function 0, cannot be defined and calculated from the velocity in the
principal plane owing to the existence of a divergence associated with the third
component of velocity. Nevertheless, for descriptive purposes only, it is convenient
to use the algorithm

0,,,(r, 0 ,) + u.rps(ro'Oo)+f -u dr (24)

to present approximations to the streamline pattern. It is understood that since a
true stream function does not exist, the pseudo-stream function is dependent upon
the integration path. The above algorithm specifically involves only radial
integration; u. can be recovered by differentiation of this function, but u, cannot be
recovered. The streamlines presented in figures 5 (a-c) were based on this algorithm.

Phenomena in the wake similar to those described above have been found in a few
previous studies. Rosfjord (1974) obtained results similar to those in figures 5 (b) and
5(c) in his experimental and numerical studies of the recirculating flow region
between two-dimensional parallel separated jets. He found that for velocity ratios
between two jets equal to 1.11 and 1.25 (upper to lower), two eddies exist near the
injector face, but the upper eddy is detached from the injector face, and a portion of
the fluid originating at the lower je- is entrained by the upper jet, passing between
the detached upper eddy and the injector face. He also reported that for a velocity
ratio of 1.4, only the lower eddy existed and a complete entrainment of the weaker
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FIGrUZ 8. Distribution of the pressure coefficient around the solid sphere in the principal plane
at Re = 100 for d, = 1.5.

jet was observed. In particular, the flow S-shaped loop near the stronger jet was
clearly indicated. Recently, Dandy & Dwyer (1990) also found a flow pattern similar
to figure 6 (b) in their numerical study of steady uniform shear flow past a single solid
sphere.

In order to facilitate the visualization of the three-dimensional character of the
flow in the wake region discussed in detail in §3.2.1, we present the pathlines of
selected fluid particles in figure 7 (a-c), at Reynolds number 100 for do = 2, where the
free-stream direction is from left to right. The pathlines x(xo, Yo, To, t), where the
subscript 0 denotes initial particle location, were obtained by solving three coupled
ordinary differential equations dx/dt = u(x), via a fourth-order Runge-Kutta
method.

We first selected two fluid particles (A and B) slightly above the principal plane
(y = 0.001) separated by a small distance (much smaller than the sphere radius)
in the wake region. Figure 7 (a) shows that particle A follows an S-shaped pathline.
On the other hand, particle B follows a closed-loop pathline as was discussed in the
previous section.

We then examined the pathline of a fluid particle C whose initial position (x,, yo,
z0 = 0.995, 0.575, 0) was in the wake region but above the principal plane. Figure 7 (b)
(a view from top of the sphere looking toward the x, y symmetry plane) shows that
the fluid particle C first follows a helical pathline as it approaches the x, y symmetry
plane and then moves downstream. Figure 7 (c) is a side view (looking normal to the
x, y symmetry plane) of that pathline.

3.2.2. Pressure and shear stress distribution

Figure 8 shows the pressure coefficient, 2(p-p,)/pUr,, around one of the spheres
in the principal plane at Reynolds number 100 for do = 1.5. On average, the pressure
is higher on the top, contributing to a positive lift force. The pressure on the bottom
of the sphere is lower between 0' and 87.60 and also slightly lower between 1590 and
1800 in the wake region than that on the top of the sphere, where the angle is
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FiGuua 9. Distribution of shear stress coefficient around the solid sphere in the principal plane
at Re 100 for d, 1.5.
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FIG•T•r 10. Tangential velocity profile on the bottom and top of the solid sphere in the
principal plane at (a) o = 360; (6) 0 =84: -, single sphere;......bottom; top.

measured from the front stagnation point (0 = 0) of the axisymmetric ffow case. On
the bottom of the sphlere, the minimum pressure occurs at an angle less than 90'. On
the top of the sphere, the minimum pressure occurs at an angle greater than 900 and
is lower than the minimum pressure on the bottom of the sphere. The maximum
pressure occurs a few degrees toward the x, y symmetry plane measured from 0 = 0.
The highest pressure in the wake region occurs a few degrees toward the x, y
symmetry plane measured from 0 = zr. These observations indicate that the front
and rear stagnation points are shifted a few degrees toward the x, y symmetry plane.

Figure 9 shows the tangential shear stress coefficient, 27r,. 6 /pL7,, in the same plane
used for the pressure coefficient in figure S. Note that the clockwise direction is
considered positive for the shear stress on the top of the sphere, and the
counterclockwise direction is considered positive for the shear stress on the bottom.
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Three-dimensional flouw over two spheres 1 7

It is seen that the shear stress, on average, is higher around the lower part of the
sphere than around the top. In particular, the magnitude of the shear stress is higher
in the lower regions 8 = 0 to 63.6 and 8 = 165.5 to mt than on the top of the sphere.
It is also important to note that. owing to their inclinations with the x-axis, the shear
forces on these two lower regions contribute to both the lift (parallel to the :-ares)
and drag (parallel to the z-axis), whereas the shear force at the top of the sphere
contributes mainly to the drag. Thus, the shear forces in this case contribute, along
with the pressure forces, to the repulsion of the two spheres. The shear stress at
0 = 0 is not zero but acts counterclockwise, and the shear stress at 0 = nt is not zero
but acts clockwise. Therefore. the front and rear stagnation points are shifted a
few degrees toward the x, y symmetry plane. Another interesting feature is that the
separation angle where the shear stress vanishes on the top of the sphere is 123. 1',
but that angle on the bottom is 126.2°. The computed separation angle of 125.70 for
the axisymmetric flow case with the medium-size grid was shown in table 2. Thus,
the reverse flow in the wake region is shifted upwards toward the x, y symmetry
plane.

We examine next the tangential velocity profiles, u,(r), at two different 0-locations
on the bottom and top of the sphere in the principal plane at Reynolds number 100
for do = 1.5. Figure 10 (a) shows the tangential velocity profiles at 0 = 36° on the
bottom and top of one of the spheres, in addition to that for the axisvmmetric case
as a reference. It is seen that the maximum velocity at the bottom is higher than at
the top, as mentioned earlier in the discussion of figure 5(b). It is also seen that the
velocity gradient at the sphere surface is higher at the bottom than at the top, hence
the higher shear stress at the bottom as explained earlier (see figure 9). Figure 10 (b)
shows the tangential velocity profiles at 8 3 840 on the bottom and top of the sphere,
in addition to that for the axisymmetric case. It is seen that now the velocity
gradient at the top wall is 26 % higher than at the bottom although the maximum
velocity at the top is only 3 % higher than the maximum value at the bottom. -The
reason is that the boundary-layer growth at the top is limited by the interaction with
the boundary layer of the other sphere.

3.2.3. Lift coefficients

In the following discussion, we classify the proximity of the two spheres into three
regimes: close, intermediate, and far separated, depending on the values of do and
Reynolds number.

Figure 11 (a-c) show the total lift coefficient and the lift coefficients due to viscous
and pressure contributions, respectively, as a function of do at Reynolds numbers 50,
100, and 150. The total lift coefficient, figure 11 (a), is positive when the two spheres
are close (do < 7.9 for Re = 50, do < 4 for Re = 100, and do < 3.4 for Re = 150). That
is, the two spheres repel each other, and the repulsion is stronger the closer they are.
Our results show that both the viscous and pressure contributions have an important
effect on the repelling force, but the pressure contribution is more dominant when
Re> 100 (compare figure llb.c). On the other hand, the total lift coefficient is
negative and relatively small - that is, the two spheres attract each other weakly
- at intermediate separation distances (7.9 < d0 < 21 for Re = 50, 4 < d0 < 21 for
Re = 100, and 3.4 < d0 < 21 for Re = 150). At these distances, the pressure is the
main contributor to the attraction force at all Reynolds numbers. The smaller the

FIGU'RE 11. Lift coefficients of the soiid spheres as a function of do at Re = 50. 100, and 150: (a) total
lift coefficient (b) viscous contribution to lift; (c) pressure contribution to lift. 0, Re = .50; .:,
Re = 100; Z, Re = 150.



zicpz rcr-sps art /UjrCr/rim.1Du 10

18 1. Kim, S. Elghobashi and W. A. Sirignano

0.008 -

aU

0.004

0 1'0 20 30
d,

FIGURE 12. M[oment coefficient of the soLid spheres as a function of d, at Be =50, 100, and 150.
Symbols as figure 11.

Reynolds number is, the smaller the pressure effect, the weaker the attraction. and
the narrower -the region of attraction. Whnen d, >, 21, however, the lift vanishes., and
the two spheres have no interactions at any Reynolds numbers.

As discussed in §3.2.1, when the two sphere; are in close proximity, the front
stagnation point is shifted toward the x, y symmetry plane, and the fluid particles
accelerate faster in the lower left region than in the upper left region of the sphere.
This difference in acceleration results in a net negative pressure gradient normal to
and away from the x,y symmetry plane, contributing to the repulsion between the-
two spheres. The shear stress is also higher i,- the lower left region than in the upper
left as shown in figure 9. Furthermore, owing to its inclination with the x-axis, the
shear force in the lower left region contributes to both the lift (parallel to the z-axis)
and drag (parallel to the x-axis), whereas the shear force at the top of the sphere
contributes mainly to the drag. Therefore, both the pressure and shear forces
contribute to a positive lift force (i.e. the two spheres repel each other) when the two
spheres are close.

On the other hand, when the two spheres are in the intermediate separation
regime, the velocity vector distributions show that the front stagnation streamline
is almost straight, and thus the ffow in the lower left region is not affected by the
presence of the other sphere. -Nevertheless, the gap between the two spheres causes
the flow to accelerate slightly faster on the top of the sphere than on the bottom and,
as a result, the average pressure in the lower region is slightly higher than that in the
narrow gap. Thus, the two spheres attract each other weakly, and the attraction
force is mainly due to the pressure distribution. The shear force, nearly parallel to the
x-axis at the top of the sphere, contributes mainly to the drag but not to the lift.

3.2.4. Moment and drag coe~ffcient.3

Figure 12 shows the moment coefficient as a function of dimensionless distance at
Reynolds numbers 50, 100, and 150. The moment coefficient is positive when the two
spheres are close (d,) < 4.6 for Re = 50, d, < 2.5 for Re = 100, and d,) < 1.96 for Be =
150), that is, the two spheres experience positive torque, and the torque becomes
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FIGURE 13. Drag coefficient of the solid spheres as a function of d, at Re - 50, 100, and 150.
Symbols as figure 11.

stronger the closer they are. On the other hand, the moment coefficient is negative
at intermediate separation distances. The moment essentially vanishes, and the two
spheres have negligible interactions with each other when do >, 21. In our
calculations, the solid spheres were not allowed to rotate under the influence of the
torque.

When the two spheres are close, the shear stress, on average, is higher around the
lower part of the sphere than around the top, and thus they experience positive
torque. On the other hand, when the spheres are at the intermediate separation
distances, slightly higher velocity in the gap leads to slightly higher shear stress on
the top than on the bottom of the sphere, and this causes the spheres to experience
weak negative torque.

We note that the torque acting on the sphere is relatively small, and the moment
coefficient is less than 1 % of the drag coefficient for all the separation distances and
Reynolds numbers. The main reason for this is that the torque depends only on the
distribution of the shear stresses (rde and r,.,) and, as shown in figure 9, the shear
stress on the top of the sphere counteracts that on the left bottom of the sphere.

Figure 13 shows the drag coefficient as a function of the dimensionless distance at
Reynolds numbers 50, 100, and 150. The drag increases with decreasing do when do
is less than 4 for all Reynolds numbers. It increases slightly with increasing do at
intermediate separation distances, and eventually tends to that of a single sphere
when do >, 21. The drag increases as the two spheres get close because the shear stress
on the sphere is increased and the pressure distribution is changed owing to the flow
acceleration on the lower left rezion as well as in the gap between them, as shown in
figures 8 and 9.

3.3. Interactions of two liquid spheres

In the analysis of the flow field past two liquid spheres, we use a viscosity ratio
(internal fluid to external fluid) of 25 and density ratio of 300. These values are
typical of liquid-hydrocarbon fuel in a high-temperature high-pressure surrounding
gas generally encountered in gas turbine combustors (Raju & Sirignano 1990).
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FIGURE 14. Velocity vector fields in the principal plane for a liquid sphere at Re = 100 for
d= 2: (a) external flow; (b) internal flow.
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FIGURE 15. Velocity vector fields in the principal plane for a liquid sphere at Re = 100 for
do = 1.5: (a) external flow; (b) internal flow.

As in the solid-sphere case, we examine the flow field for two liquid spheres in the
(x, z)-plane of symmetry, the principal plane, where the narrowest path between the
liquid spheres is encountered. Figure 5(a-c) discussed in §3.2.1 can also represent
typical streamlines in the external flow of liquid spheres. However, there are
differences from the solid-sphere case. First, the angle, measured from 0 = 0, at
which separation occurs on the sphere surface is much higher than that of the solid
sphere. Second, a closer examination of the velocity plot (figures 14a and 15a) in the
wake region indicates that the separating streamline, instead of being nearly normal
to the sphere surface, now curves closer to the sphere surface, producing a' squashed'
recirculation zone. This behaviour was also seen in the velocity vector field of
axisymmetric flow in figure 4 (a). The length of the recirculating eddy is also slightly
smaller than that of the solid sphere.

Figure 14 (a, b) shows the velocity vector fields of the external and internal flows,
respectively, in the principal plane at Reynolds number 100 where the two spheres
are separated by a distance d. = 2. A secondary eddy in the liquid-sphere stern region
is evident in both the upper and lower regions in the principal plane, but the eddy
centres in both regions are asymmetrical with respect to the: --= 0 plane. .Aso, these
eddies are concomitant with the occurrence of the eddies in both regions in the
external flow. Figure 15 (a, b) shows the velocity vector fields of the external and
internal flows in the principal plane at Reynolds number 100 for the case of d. = 1.5.
The secondary internal eddy in the liquid-sphere stern region exists only in the lower
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FIGURE 16. Total lift coefficientX of the liquid spheres as a function of do at Re = 50 (O), 100
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FIGURE 17. Moment coefficient of the liquid spheres as a function of do at Re - 50, 100, and
150. Symbols as figurs 16,

region, and the secondary eddy in the upper region no longer exists. The vanishing
secondary internal eddy in the upper region is accompanied by the disappearance of
the recirculating eddy mi the upper region in the external flow.

Calculations of the lift, moment, and drag coefficients were performed for
dimensionless distances from the liquid sphere centre to the symmetry plane between
two liquid spheres in the range 1.5 < do < 25, for a viscosity ratio (liquid to gas) of
25 and density ratio of 300 at Reynolds numbers 50, 100, and 150. Figures 16, 17, and
18 show the coefficients of total lift, moment, and drag as a function of dimensionless
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FIGLxm 18. Drag coefficient of the liquid spheres as a function of d, at Re = 50, 100, and 150.
Symbols as figure 16.

distance at Reynolds numbers 50, 100, and 150. The coefficients of total lift, moment,
and drag are shlghtly smaller in absolute value than those for the solid spheres at both
the repelling and attraction separation distances and at all Reynolds numbers. The
lower coefficients of the liquid sphere are attributed to the surface motion of the
liquid sphere which reduces the velocity gradient and friction force. A smaller drag
coefficient for the liquid sphere in axisymmetric flow has been also found in earlier
calculations (Clift et al. 1978).

4. Conclusions

Three-dimensional flow interactions between two identical (solid or liquid) spheres
which are held fixed, with the line connecting the sphere centres normal to a uniform
stream, have been investigated at Reynolds numbers 50, 100, and 150 as a first step
towards understanding the three-dimensional interactions with a large concentration
of particles.

First, the interactions between two solid spheres have been investigated for a
dimensionless distance in the range 1.5 s< do ý< 25.

The two spheres repel each other when they are close (d0 < 7.9 for Re = 50,
do < 4 for Re = 100, and d0 < 3.4 for Re = 150), and the repulsion is stronger the
closer that are. On the other hand, the two spheres attract each other weakly
at intermediate separation distances (7.9 < do < 21 for Re = 50, 4 < do < 21 for
Re = 100, and 3.4 < do < 21 for Re = 150). For do >, 21, however, the lift vanishes,
and the two spheres do not interact at any Reynolds numbers.

The two spheres experience positive torque when they are close (do < 4.6 for Re =
50, do < 2.5 for Re = 100, and do < 1.96 for Re = 150), and the torque is stronger the
closer they are. On the other hand, the moment coefficient is negative at intermediate
separation distances. The moment vanishes, and the two spheres do not interact
when do > 21. The drag on the spheres increases when do is less than 4 for all
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Reynolds numbers. It increases slightly at intermediate separation distances, and
eventually, tends to that of a single sphere when d, > 21.

The flow structure ahead of each sphere is such that the streamlines shift away
from the x, y symmetry plane due to the dow blockage in the gap between the two
spheres as they approach the front stagnation region. Also. interesting phenomena
in the near wake have been discovered as the gap between the two spheres decreases.
When d. = 2, the upper eddy is not formed by the fluid separating on the upper
pon zion of the sphere, but rather by the fluid turning around the lower eddy and
detached from the sphere. Furthermore, when d0 decreases to 1.5, both the upper
eddy and downstream stagnation point vanish.

The interactions between two liquid spheres have been also investigated for the
dimensionless distance in the range 1.5 •< d, •< 25 for a viscosity ratio of 25 and
density ratio of 300 at Reynolds numbers 50, 100, and 150.

The magnitudes of the lift, torque, and drag on the liquid spheres are slightly
smaller in absolute value than those of the solid spheres at all the separation
distances and all Reynolds numbers. The flow structure in the external flow of the
liquid spheres is quite similar to that of the solid spheres, except that the separation
angle is much higher than that of the solid spheres and the separation streamline is
bent closer to the sphere surface producing a 'squashed' recirculation zone.
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Abstract in x-direction
V.,,t instantaneous dimensional droplet velocity

A numerical simulation is performed for the three- in y-direction
dimensional interaction of two moving droplets which t time normalized by aol/Ud,,

are injected into an initially quiescent fluid medium. X, y, z Cartesian coordinates
The pressure and velocity fields around each of the
droplet are modified due to the presence of the other
droplet. Drag and lift are therefore different from the Greek symbols
values for an axisymmetric flow around a single iso- C 77, nonorthogonal generalized coordinates
lated droplet. The droplets decelerate due to the drag T viscous stress tensor
and changing their direction of motion due to the lift.
By choosing the origin of a noninertial reference frame Superscript
at the center of mass of the two droplets, the Navier- / dimensional quantity
Stokes equations are solved with a noninertial term in
an iterative manner. For small initial separation, the
lift forces are repelling, thereby increasing the separa- Subscript

tion. For larger initial separation, a slight attraction 0 initial quantity

occurs.
1. Introduction

Nomenclature
Typical dispersed two-phase flows encountered in en-

a. dimensional droplet radius gineering applications such as combustion systems and
d. initial ratio of distance between droplet chemical processes have regions of large concentration

centers to droplet diameter of particles or droplets. In such regions, the effect of
dt instantaneous dimensionless distance neighboring droplets modifies the ambient conditions in

between droplet centers the flow near any given droplet. The droplet trajectory
it instantaneous dimensionless position and the coefficients of drag, lift, and moment can be

in y direction significantly affected by the modified flow field due to
N1 , N 2 , N3 numbers of grids in ý, q7, ( directions neighboring droplets.
Re initial Reynolds number based on droplet The geometrical configurations of droplets in a real

diameter, U 0,o2a0 /v region of large concentration are complex and subject
Ret instantaneous droplet Reynolds number, to uncertainty. Droplet arrays as discussed by Sirig-

UdI,2ao/i nano [1], although artificial, can provide information
Udo initial dimensional droplet velocity on droplets interaction and give a detailed analysis of
U, instantaneous dimensional droplet velocity, the problem.

Vs" + U12., Several investigators [2-7] have performed research on
axisymmetric configurations of interacting particles (or

U.''t instantaneous dimensional droplet velocity droplets) in the wake of another particles (or droplets).

"Copyright @1992 by the authors. Published by the Amer- Recently, Kim et al. [8] investigated three-
ican Institute of Aeronautics and Astronautics, Inc. with dimensional flow interactions with two identical spheri-
permission. cal droplets which were held fixed relative to each other

tResearch Associate, Member AIAA. in the transverse direction against the uniform stream
IProfessor of Mechanical and Aerospace Engineering, at Reynolds number 0(100); they also studied two in-
member AIAA.

iProfessor of Mechanical and Aerospace Engineering, dentical solid spheres in the same situation. They de-
Fellow AIAA. termined the effects of three-dimensional interactions



on the lift, moment, and drag coefficients as a function is 1 < •i < Nil, 1 < rY7 _< N2 , 1 < (, < N 3 + 1. • = 1
of the dimensionless distance between the two spheres and Nil correspond to the center and the surface of the
ar.d Reynolds number and also discovered interesting droplet, respectively. i/z = 1 and N 2 denote the positive
near-wake flow patterns as the gap between the two zi-axis and the xz - y, plane, respectively. (I = 1 and
spheres decreased. N 3 + 1 are the same plane and refer to the z, - z,

In the present paper, we extend the work of Kim et plane. Within the droplet, ýz = constant are a family
al. [8] and study the droplets interaction in a more real- of concentric spherical surfaces. Uniform spacing (6b =
istic situation where two identical droplets are injected 5Y = =6 = 1) is used for the generalized coordinates in
and then move side-by-side into initially quiescent fluid both phases for convenience.
medium. The droplets will be decelerating due to the The nonorthogonal generalized coordinate system
drag and changing their direction of motion due to the for the external flow can be easily adapted to three-
lift. By placing the origin of a noninertial reference dimensional arbitrary geometries. We solve the time-
frame at the center of mass of the two droplets, the dependent equations of continuity and Navier-Stokes
Navier-Stokes equations to be solved include a nonin- with all associated conditions, as will be discussed in
ertial term, which will be evaluated from Newton's sec- detail in section 2.2.
ond law for the droplet motion. 2.1 Governing equations and boundary condi-

2. Formulation and numerical solution tions
Since our goal is to study the flow interaction with

We consider an unsteady, three-dimensional, incom- the two droplets, we present the equations for the gas
pressible, laminar flow generated by two indentical and liquid phases. The continuity and momentum
(spherical) droplets injected into initially quiescent con- equations in both phases, and the boundary conditions,
stant property Newtonian fluid and then moving side- are nondimensionalized using the droplet radius a , as
by-side lying in the same plane as shown in Figure 1, the characteristic length and Udo as the characteristic
where dt denotes the instantaneous distance, normal- velocity.

ized by the droplet radius, from the droplet center to

the y-z symmetry plane between the two droplets. We Gas phase
neglect the net gravity force acting on the droplet and
also assume that the Weber number is small enough V.V = 0 (1)
that the droplet remains of spherical shape. We choose
the origin of a nonrotating noninertial reference frame dV, DV 2-V2 V, (2)
at the center of mass of the two droplets and the angle + Dt = Vp + Re
of initial droplet motion ao,, = 0. Far upstream, the
flow is uniform and has an instantaneous velocity V,,,t where V, is the velocity of the center of mass of the
j parallel to the y-axis. It is noted that there are two two droplets.
symmetry planes in Figure 1 One is the x-y plane in
which the centers of the two droplets lie, and the other Liquid phase
is the y-z plane which is midway between the droplet
centers. V'V 1 = 0 (3)

As shown in Figure 1, we utilize three coordinate
systems in our formulation, the Cartesian coordinates dVd DV_ 2
(x,y,z) for the gas phase whose origin is at the center d + - -p1 + 72V" (4)

of mass of the two droplets, the Cartesian coordinates
(xi, yl, zi) for the liquid phase whose origin is at the(droplet fornther liqud phae wonrthoseorgin i g atted where Vd is the droplet velocity. In these first calcu-
droplet center, and also the nonorthogonal generalized lations presented herein, the inertial correction for the
coordinates (ý, 77, (). ý is the radial, rq is the angular, liquid phase has been neglected.
and ( is the azimuthal direction. Due to symmetry The governing equations are transformed to the gen-
of the geometry, the physical domain is chosen as one The gornin atis are transfor to thee-quarter of an ellipsoid-like space. eralized coordinates (•, 17, (), which allow for any three-

quarer f anellpsoi-lie spce.dimensional body of arbitrary shape. The numerical
For the gas phase outside the droplet, the flow do- imension of t f ations shpe.f The usical

mainintegration of the equations is performed using a om-
ai s oud < N3 -4- 1., 1 andN 1 correspond respec- putational cubic mesh with equal spacing (6c = bt=1 <_ N3 + 1. 1 and N, correspond respec- bf(= 1).

tively to the droplet surface and the farfield boundary
surrounding the droplet. r = 1 and NV2 denote respec- Gas/liquid interface conditions
tively the positive zi-axis and the x1 - yI plane outside
the droplet. ( = 1 and N 3 + 1 are the same plane and The conditions at the interface, I = 1 or = N.1 , are
refer to the x1 - zi plane outside the droplet. based on the the principle of continuity of shear stresses

For the liquid phase inside the droplet, the domain and tangential velocities. Since the interface in our flow

2



is always spherical (under the assumption of small We-
ber number), it is more convenient to cast these con- a 8, a ,

ditions in terms of spherical coordinates (r, 0, 0) whose - =- 0, wt=0 at ýl = 1. (16)
origin is at the center of the droplet. 

89t O•t -

Tre,, = h,rS,s , (5) Opg au l NJ aw l

= (6) 87 . . .- 0 at 77, = 1. (17)'r , 3 = 771,, ,7 (1 r, 0 7 1 j'71 0rt

ve = V•,1,, , (7)
api aui _ vi

= , (8) 077- =0, wj=0 at m =N..(18)

The periodic condition is applied for uj, v1, wg, and p1
where -r,#,, and T-,,, are respectively the shear stresses at the two planes (I = 1 and N3 + 1.

on a positive r-plane in the positive 0 and 0 direction,
and the subscript s denotes the surface of the droplet. The drag, lift, and moment coefficients are evaluated
Because no fluid can cross the surface of the droplet, in dimensional form as follows.
the normal velocities at the interface relative to surface
are zero in both phases. The interface condition for
pressure is obtained from the momentum equation. FD = / -pln-eD dS' + f n--rleD dS' (19)

Due to the different Cartesian coordinates used in -is
each phase, the relation between the velocities on the
interface is expressed as follows. r

F, = -p'n'eL dS' + n. "eL dS' (20)

U = ut + U't ,(9) is

v = v, (10) M= ir' x r' dS', (21)

W = Wt, (11)

where U,,, is the droplet velocity in x-direction due to where eD = (-sinati+cosorj), eL = (cosati+sinatj),

the lift force acting on the droplet. S' denotes the surface of the droplet, n is the outward
unit normal vector at the surface, r' is the position

Gas-phase boundary conditions vector from the center of the droplet, and -r' is the
viscous stress tensor.

In the following equations, u, v, and w are the gas The repelling force is assumed positive. Due to the
velocities in the x, y, and z direction, repectively. p is geometrical symmetry, only the z-component of mo-
the pressure, and the subscript I denotes liquid phase. ment exists, and counter-clockwise direction is assumed

positive.
p = 0, u = 0, v = V , w = 0 at • = N1  (12) The nondimensional coefficients of drag, lift, and mo-

except x = 0. ment are defined respectively as

ax- ax - w = 0, U0 at x=O0. (13) CD= F 2

Op xOv _9aw Fp'b 2  (22)

O - a0 - og -0 u=0- at iz=0. (14) C -= ... (.23)

2.P ' t 0ra

ap au av aw
T,7 T77t T77t = r - 0 at ,q =i. (14) CL. - ... 2 (23)

Op Ou Ov- r- 0r- 0, w=0 at =N.2 . (15) M'.k
CM-= PIU.2 7ra' 3  (24)

The periodic condition is applied for u, v, w, and p at 2 dt

the two planes • = 1 and N 3 + 1. 2.2 Numerical solution

We solve numerically the complete set of Navier-
Liquid-phase boundary conditions Stokes and continuity equations in each phase, subject
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to the boundary conditions discussed in the previous differ from ours.
section. We have developed a three-dimensional im-
plicit finite-difference algorithm to solve simultaneously
the set of the discretized partial differential equations. We first tested the three-dimensional code by solving

The governing equations are represented in general- the steady axisymmetric flow past a single droplet at
ized coordinates (ý, Y7, (), and the control volume for- Reynolds number 100. Since the code developed solves
mulation is used to develop the finite-difference equa- for three Cartesian components of velocity in the trans-
tions from them. The method of solution employs formed grid, an axisymmetric test calculation still ex-
an Alternating-Direction-Predictor-Corrector (ADPC) ercises the fully three-dimensional aspects of the code.
scheme to solve the time-dependent Navier-Stokes 3.1 Flow over a single droplet
equations. A pressure correction equation is employed H.r w ose flowngleratet
to satisfy indirectly the continuity equation. Here we discuss the flow generated by an impulsively

The overall solution procedure is based on a cyclic started single droplet into an initially quiescent fluid

series of estimate-and-correct operations. The velocity using the three-dimensional solution procedure for vis-

components are first calculated from the momentum cosity ratio of 25 and a density ratio of 300 (liquid to

equations using the ADPC method, where the pressure gas) at Reynolds number 100. The time-dependent so-

field at the previous time step is employed. This esti- lution converges asymptotically to the steady-state re-

mate improves as the overall iteration continues. The sults. Table 1 lists the drag coefficients (CDp and CDV
are respectively the pressure and viscous parts of CD))

pressure correction is calculated from the pressure cor- aersetvl h rsueadvsosprso D
rec orrection using the SORsuccessive overrelaxtion as a function of the computational grid density which
method. The new estimates of pressure and velocities are in good agreement with the correlation of Rivkind
are then obtained. & Ryskin [10]. Table 2 shows two angles measured

aeThensame obaed ps. from the front stagnation point where 01 is the angle
The same procedure is performed in the liquid phase, at which the surface vorticity changes its sign and 0, is

The governing equations of motion in each phase are t a

solved in an interactive sequence through the interfaceis zero.

boundary conditions until convergence is achieved for The calculations were performed for three different
each time ditions unth calculation.ver ngen s aieedrfopt grids, (N 1 xN,, x N 3 and NiX N,_txN 31) = (20x 11x32each time step of the calculation. Changes in droplet and 10 x 11 x 32), (30 x 15 x 48 and 15 x 15 x 48 ),

velocity are also determined by resolving lift and drag and (4x 21 6a 0x 15x 64),
forces on the droplet and applying Newton's second and (40 x 21 x 64 and 20 x 21 x 64), in A computational
forceThis pron esscontinues l the dp ly etion's sconv e domain having an outer boundary located at 21 droplet
law. This process continues until the solution converges radii from the droplet center. The solutions from the

Inthea tmerl p dep. tthree different grids were stable and smooth, and each
In the overall procedure, the sequential solutions of takes dimensionless times of 20 to reach steady state.

governing equations and boundary conditions with grid Tables 1 and 2 show that the results of the 30 x 15 x 48
and relative velocity adjustment are iterated until con- grid differ by only 0.8 % in the drag coefficient and 0.7
vergence is achieved. After convergence is reached, the % in the separation angle from those of the 40 x 21 x 64
drag, lift, and moment coefficients are evaluated at the grid. Thus, for computational economy (a long time
prescribed time interval. period is needed for our time-dependent solution of the

Now, the moving droplets change their directions due moving droplets), we selected the medium size grid 30 x
to the interactions with the surrounding fluid. How- 15 x 48, and 15 x 15 x 48 in the liquid phase for the
ever, in order to insure its accuracy, the computational remainin calculations.
grid must satisfy the condition that the lift and torque
are zero for a single droplet moving in any direction. 3.2 Interaction of two moving droplets
Figures 2(a) and 2(b) show two different grid distribu- Calculations were performed for initial dimension-
tions on the droplet surface. The grid in Figure 2(a) for less distance d, = 2 and 9 at initial Reynolds num-
a single droplet gives at finite angle a, nonzero lift and ber 100 for the time period 0 < t < 250. This time
torque which have the same order of magnitude as those period is about one quarter of the lifetime for a vapor-
of droplets separated by d0 < 2. On the other hand, izing droplet injected into a combustor, and so major
the grid in Figure 2(b) gives zero lift and torque at any changes in transport processes and flow field would be
angle. We generate this three-dimensional grid alge- expected to occur. The viscosity and density ratios (liq-
braically by using a set of ellipsoids, cones, and planes, uid to gas) for the droplet is 25 and 300, respectively,
where grid density is controlled by the stretching func- which are typical of liquid-hydrocarbon fuel in high-
tion developed by Vinokur [9]. Figure 3 presents the temperature, high-pressure surrounding gas generally
grid on the x-y symmetry plane with the droplet cen- encountered in gas turbine combustors.
ters at dimensionless distance d, = 9. Our numeri- Figure 4(a) shows the trajectory of one droplet for
cal solution scheme has been developed for arbitrary d, = 2, where the numbers on the lines denote the
grid systems so that it is necessary only to change the dimensionless time. The final location of the droplet
subroutines of grid generation for flow geometries that at t = 250 is (d,, 1,) = (2.505, 212.6). Now. since the
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final location of a single droplet at t = 250 in the case tially due to impulsive start.
of no drag and lift forces acting on it would be (d,, It) Figure 8 shows the speed of the droplet as a func-
= (2, 250), the figure indicates that the two droplets tion of dimensionless time. There is a sudden drop
are repelling each other as well as decelerating, and in the speed at the moment of droplet injection and
the change of distance (normalized by droplet radius) then monotonically decreases with time. The speed for
is much higher (37.4 vs. 0.505) due to the drag than d0 = 2 is lower than d. = 9 due to the larger drag of
due to the lift force. Figure 4(b) shows the trajectory of do = 2.
one droplet for do = 9. The final location of the droplet Figures 9(a) and 9(b) show the velocity vector fields
at t = 250 is (dt, It) = (8.968, 213.1). The theoretical of gas and liquid phases at Ret = 96.86, d, = 2.002,
final location of a single droplet at t = 250 in the case and t = 19.9 in the x-y plane of symmetry. where the
of no drag and lift forces would be (dt, It) = (9, 250); narrowest path between the two droplets is encoun-
therefore, Figure 4(b) identifies that the two droplets tered. The free stream is coming from the left in the
are weakly attracting each other as well as decelerating, figures. The velocity vectors were first calculated in
and the change of distance is much higher due to the the Cartesian coordinates fixed at the center of mass of
drag than due to the lift force. the two droplets and then converted in the Cartesian

Figure 5 shows the lift coefficients of the droplet for coordinates fixed at the center of the droplet. Due to
do = 2 and 9 as a function of instantaneous Reynolds the divergence of the front dividing streamline and the
number, where the repelling force is taken as positive, shift of the front stagnation point toward the y-z sym-
The lift coefficient for do = 2 is positive during the time metry plane, the fluid particles accelerate more in the
period 0 < t < 250, and becomes gradually smaller in lower left region around the droplet than in the upper
time because the distance between the droplets is in- left. Furthermore, the pressure drop in the lower left
creasing and their directions of motion are changing due region is higher than the pressure drop through the nar-
to the repelling force. On the other hand, the lift coeffi- row path between the two droplets. Shear stresses on
cient for d, = 9 is negative during that time period but the lower left region are also higher and contribute to
slowly goes towards zero. The change of the distance lift as well as drag due to their inclination with y-axis,
between the two droplets for d, = 9 case is negligi- whereas the shear stresses at the top of the droplet are
bly small as shown in Figure 4(b). Thus, this result higher due to narrow path but contribute mainly to the
also indicates that the lift coefficient slowly approaches drag. As a consequence, the two droplets are repelling
zero when Reynolds number decreases with the fixed each other. These phenomena are explained in detail
dimensionless distance 9. The figure also shows that in the study of Kim et al. [8] about the flow past fixed
rapid change occurs initially due to impulsive start of spheres.
the droplets and the quasi-steady state occurs when Figures 10(a) and 10(b) show the velocity vector
t > 30. fields of gas and liquid phases at Ret = 96.94,dt = 9,

Figure 6 shows the moment coefficients of the droplet and t = 19.9 in the x-y plane of symmetry. The veloc-
for d, = 2 and 9 as a function of instantaneous ity vectors near the front stagnation point indicate that
Reynolds number, where counter-clockwise direction is the front dividing streamline is similar to that of a sin-
take as positive. The moment coefficient for d. = 2 is gle droplet and the front stagnation point moves very
positive initially and gets gradually smaller and changes slightly away from the y-z symmetry plane. Slightly
its sign from positive to negative at t = 150. On the lower pressure occurred in the upper region than in the
other hand, the moment coefficient for d0 = 9 is neg- lower region due to the relatively narrow path between
ative during the time period 0 < t < 250 but slowly the two droplets. As a consequence, the two droplets
approaches zero. are weakly attracting each other.

Figure 7 shows the drag coefficients of the droplet for 4. Conclusions
d, = 2 and 9 as a function of instantaneous Reynolds
number. The drag coefficient for d. = 2 is higher than A numerical simulation was performed for the three-
that for d, = 9. In earlier time, the difference is greater dimensional interaction of two moving droplets which
but becomes gradually smaller as time goes on. The are injected into an initially quiescent fluid medium.
reason is that the droplets for do = 2 are repelling each Calculations were performed for initial dimensionless
other and the distance between them is increasing, and distance d -= 2 and 9 at initial Reynolds number 100
so the drag becomes gradually smaller. The drag co- for the time period 0 < i < 250.
efficient for d, = 9 is almost identical to that for a The droplets for d, = 2 repel each other as well as
single droplet (slightly higher that for a single drrtnlet decelerate. Their lift coefficient is positive during the
when t > 30.) Tsuji ef a!. [10] and Kim et at. [(E Aso time period 0 < t < 250 and gets gradually smaller due
found that for the fixed spheres and do > 4, the drag to the change in the distance and direction of motion.
coefficient is almost identical to that of a single sphere. The droplets for d0 = 9 weakly attract each other
Figure 7 also shows large drag coefficient initially which as well as decelerate. Their lift coefficient is negative
indicates that large shear stress and pressure occur ini- during the time period 0 < t < 250, but goes slowly
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towards zero. This indicates that the droplets for that 10. Rivkind V. Y. & Ryskin, G. 1976 Flow structure
separation distance are tending towards weaker repul- in motion of a spherical drop in a fluid medium at
sion as the Reynolds number decreases. intermediate Reynolds numbers. Fluid Dyn. 11,

The drag coefficient for d0 = 2 is higher than that 5-12.
for d0 = 9. In earlier time, the difference is greater butbecomes gradually smaller as time goes on. The drag 11. Tsuji, Y., Morikawa, Y. & Terashima, K. 1982

coefficient for do = 9 is almost identical to that for a Fluid-dynamic interaction between two spheres.
single droplet. it. J. Muliiphase Flow 8, 71-82.
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Gas Liquid

NI x NI x N3 N11x N-ýI X N3 1 CDP CDV CD Cý

20 x 11 x 32 10 x 11 x 32 0.542 0.586 1.128

30 x 15 x 48 15 x 15 x 48 0.520 0.573 1.092
x

40 x 21 x 64 20 x 21 x 64 0.511 0.571 1.081 1.08

Table 1. Drag coefficients as a function of grid density at R = 100,
where * denotes the data from the correlation.
of Rivkind & Ryskin (1976)

Gas Liquid

N, x N2 X N3 IV1, x N,4 x N 3, 01, 62.

20 x 11 x 32 10 x 11 x 32 126.81 146.30

30 x 15 x 48 15 x 15 x 48 127.70 150.13

40 x 21 x 64 20 x 21 x 64 127.74 151.20 X

Table 2. Angles at which the surface vorticity changes its sign and
the surface velocity is zero as a function of grid density
at Re = 100, where the angles are measured from
the front stagnation point.
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ADDENDUM TO SECTION 5
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Abstract
The present study extends the previous droplet models [1, 2] to investi-

gate numerically the system of three droplets which are moving in tandem
with respect to the free flow. The purposes of this study are to study the
wake effect of the lead droplet on the downstream droplets and to exam-
ine the effects of initial spacing on the total system. The effects of variable
thermophysical properties, transient heating and internal circulation of liq-
uid, deceleration of the flow due to the drag of the droplet, boundary-layer
blowing, and moving interface due to surface regression as well as relative
droplet motion are included. The results are compared with those of an iso-
lated droplet [1] as well as those of the two-droplet system [2] to investigate
the effect of the presence of the third droplet. The interaction effects from
the downstream or upstream droplet are identified. The transport rates of
droplets are reduced from the values for an isolated droplet, and values for
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the downstream droplets are profoundly less than those for the lead droplet.
The difference in transport rates is large between the first two droplets; how-
ever, it becomes insignificant between the second and the third droplets.The
modifications to the transfer correlations for an isolated droplet needed to
account for the interaction effects are determined.

Nomenclature

BH Cp .¢ilm(T. - T(1- r)L, effective heat transfer number

C,,, Cp'lCp,.o, specific heat of gas phase
D12 D12'/R,, 0 , non-dimensional droplet spacing

between the first and the second droplets
D23 D23'/R'1,0 , non-dimensional droplet spacing

between the second and the third droplets
L L'/(T'C',o0 ), latent heat of vaporization
NU I-, ., Nusseit number

R R`/19,o, non-dimensional instantaneous droplet radius
Q1 heat flux
Reg aoU.,opqOo/PC, gas-phase Reynolds number

Sh A ft a s"ndO, Sherwood number
s.p. separation point at droplet surface (degree)
T T'/T', temperature
V' time
Uo U.'/U.o,o, instantaneous free-stream velocity
Yi mass fraction

Greek

g, KI/x,.o, conductivity of gas phase
p•/p•,o viscosity of gas phase
density of gas phase

THO t'0/(R,,o Pg,,), gas hydrodynamic diffusion time

Superscript
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dimensional quantity

Subscripts

f fuel
film film conditions, average of ambient and surface conditions
g gas phase
1 liquid phase
i numerical index for droplets, 1=lead droplet, 2=second droplet,

3=third droplet
iso isolated status
3 average surface condition
0 initial condition
oo free stream condition

1 Introduction

In realistic spray situations, the fuel is usually introduced into the combustor
as a stream of liquid that breaks into droplets. The droplets subsequently
vaporize in the convective gas stream to form the air-fuel mixture. Typi-
cally, the fuel is of sufficiently low volatility that vaporization is an impor-
tant controlling factor in the estimation of combustion rates. Usually, in the
dense-spray regions such as regions near the fuel nozzle, the droplet spacing
is so small that the interaction effects would modify the droplet behavior
significantly. In order to obtain the qualitative modification of the transfer
coefficients in the practical dense spray calculation, it is then necessary to
consider the interactions among a stream of multiple moving droplets. How-
ever, a detailed and accurate simulation of hundreds of droplets will be very
time consuming and very difficult to perform. In fact, the behavior of trailing
droplets, which follow the first two or three droplets, can be estimated from
that of the first two or three droplets on account of the periodical nature
of linear droplet arrangements. This research addresses the interaction of
three vaporizing droplets moving collinearly which represents a model of an
injected stream of fuel droplets.
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There is a lack of a detailed investigation of multiple-droplet-interactions
involving variable properties, transient heating and internal circulation of
droplets in the literature. Even the simplified numerical computations of
three-droplet dynamics are rarely found. Tal et al. [4] used a multisphere
cylindrical cell model to study hydrodynamics and heat transfer in assem-
blages of spheres. They found the hydrodynamic solution and Nusselt num-
ber, defined by using average bulk temperature of the cell unit inlet, to be
perodic. Tong and Chen [5] have included vaporization in Tal's model to in-
vestigate the effects of droplet spacing on heat and mass transfer of droplets
in a liquid droplet array. A three-droplet array in a cylindrical duct has been
used to obtain correlations between Nusselt number and local ambient prop-
erties for each droplet. The cylindrical cell model is somewhat idealized and
some assumptions must be imposed on the cell boundaries. Hence, their re-
sults must be verified by calculations from an advanced model. Kleinstreuer
et al. [6] used a finite-element microscale analysis to find the drag coefficients
of interacting spheres in a linear array and a boundary-layer analysis for va-
porizing droplets to simulate coupled transfer processes for three interacting
droplets in a one-dimensional trajectory. Their solution is basically the com-
bination of three single-droplet-solutions with an "effective approach stream
temperature" to account for interactions. The heat and momentum trans-
fer of spheres in a linear array was studied by Tsai and Sterling [7] where
a finite difference method combined with a body fitted grid was employed.
The transient effect and mass transfer was excluded in this numerical calcu-
lation. The results of Nusselt number and drag coefficients of droplets are
qualitatively in agreement with the findings of Tong and Chen [5] and Tal et
al. [4].

In the present study, the momentum, heat and mass transfer of three in-
teracting, vaporizing droplets are taken into account and the relative motion
due to different drag forces that the droplets have experienced is included.
We aim to understand the wake effects on the transport rates of the down-
stream droplets. The primary emphasis will be placed upon the interaction
effects due to different initial spacings.

The schematic flow configuration is presented in Figure 1 where the
flow passing over three vaporizing droplets moving in tandem is shown. The
flow is laminar and axisymmetric with initially uniform ambient conditions
specified by , and Yf,, = 0. The initial droplet spacing is
also prescribed. Dij is the non-dimensional droplet spacing (with respect
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to the initial radius of the first droplet) between the ith droplet and the jtk
droplet. The frame of reference is fixed to the center of the lead droplet and
an account will be made for this noninertial frame by the use of a reversed
pseudo force. The problem can be viewed as an impulsively-started flow over
a fixed droplet and two moving downstream droplets aligned in tandem.

The full consideration of forced convection of the gas phase, transient
deceleration of the flowfield due to the drag force, internal circulation and
transient heating of the liquid phase, variable properties, and transport pro-
cesses occurring at the vaporizing droplet interface required to solve the
Navier-Stokes equations, energy equation and species equation, combined
with appropriate boundary conditions simultaneously. Also, in order to con-
sider the moving boundaries due to surface regression and relative droplet
motion, a general method of generating boundary-fitted coordinate systems
is required.

The axisymmetric governing-equations in cylindrical coordinates and their
corresponding finite-difference equations, and numerical procedures are given
in Chiang [3]. The computer codes employed in our previous research [1, 2]
have been modified to deal with the present three-droplet arrangement The
modification involves the grid generation routine as well as the routines which
handle the relative motion and spacings between droplets. The calling se-
quence and parameter transfer among subroutines have been adapted to ac-
commodate new variables and the increase in memory size.

2 Results and Discussion

Six production runs simulating three equi-sized droplets, with the same initial
droplet Reynolds number but with different initial droplet spacings, moving
collinearly have been performed. The values of physical parameters employed
in each case are the same as the base case of the two-interacting-droplet
study [2]. The values of initial spacings in each case are given in Table 1.

The computations are performed on a CRAY Y-MP supercomputer. Fig-
ure 1 also shows the typical grid distributions at the beginning and at the
final computational time for the case of droplet coalescence. It is noted that
the computation is stopped when the droplet spacing is reduced below 2.6
or whenever the downstream droplet approaches the outer computational
boundary, since the grid generation routine may generate an overskewed grid
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system under these conditions. Often the computation terminated at a very
early stage of the droplet lifetime during which most of heat flux to the
droplet surface would be transferred to the interior of the droplet. Hence,
the effective transfer number (BH = Cp' i'm(T. - T.)(1 - Q )/L') is quite
small. The amount of mass evaporated is insignificant, as a result the evap-
oration rates of droplets are not reported here. The time scale used in the
following discussion is the gas-phase hydrodynamic diffusion time scale.

The representative results to characterize the droplet behavior are sum-
marized below.

The global contours of results from Case 1 (with D12=D23=12) and Case
4 (D12=D23=6) are compared in order to study the effect of initial spacing on
the flow field. The vorticity distributions and isotherms for the gas and liquid
phases are presented in the top and bottom portions of each plot of Figure 2,
respectively. The results of Case 1 at two different times are portrayed in the
upper two plots. At the early time, droplets experience the convective effect
such that high vorticity gradients occur at the front portion of the droplet,
and an asymmetric distribution is developed. The flow field surrounding each
droplet resembles that surrounding an isolated droplet [1]. At five gas-phase
diffusion times, the D12 is reduced from 12 to 2.96. The vorticity convected
downstream from the first droplet has directly touched the second droplet
and shifted its vortex center to the equatorial plane since less convection
has acted on the downstream droplet. The second droplet is well protected
by the vorticity wake of the lead droplet, while the third droplet, spaced
9.5 droplet radii away from the second droplet, behaves qualitatively as an
isolated droplet.

For the case of small initial droplet spacing (Case 4), the interaction
effects are expected to be strong. The velocities approaching the second
and the third droplets are more or less similar but are considerably smaller
than that approaching the lead droplet. As a result, the convective effect on
transport is subdued. In both cases, the vorticity distribution for the lead
droplet is distorted by the approaching of the second droplet.

The isotherms demonstrate thermal-transport interactions among three
droplets and the gas phase. For the case with sufficient large droplet spacing,
the three droplets show the same isolated-droplet-isothermal-pattern at the
early time as indicated in the uppermost plot. The third trailing droplet
always exhibits the same temperature contour as that of an isolated droplet,
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even though the approaching temperature and velocity have decreased from
the values upstream of the lead droplet. The case with small initial spacing
shows quite different thermal transport mechanisms. The temperature gradi-
ents for the downstream droplets are smaller than those for the lead droplet
due to the action of the thermal wake. The thermal boundary layer thickness
increases in the downstream direction along the surface for the lead droplet.
This behavior is opposite for the third trailing droplet in the close spacing
case.

The transport properties of trailing droplets are substantially affected by
the fuel vapor convected downstream. The composition of the mixture and
hence the density of gas-phase surrounding each droplet will be different for
each droplet depending on the droplet spacing. The mass-fraction contour
of Case 1 at two different times are presented in Figure 3. An envelope
of vapor wake created by the leading droplet and covering the downstream
droplet is identified even though the droplet spacings are large. This envelope
serves to reduce the exchanges of momentum, mass and energy between the
ambience and the trailing droplets. As time progresses, the droplet spacing
from the leading droplet is reduced, the change in spatial vapor distribution
of downstream droplet is more profound.

The variations of Nusselt number along the gas/liquid interface of the
droplets for Case 1 and Case 4 are shown in Figure 4. In Case 1, the decrease
of Nusselt number at the front stagnation portions of the trailing droplets are
caused by the cold fuel/air mixture convected downstream from the upstream
droplets. The qualitative variations of Nusselt numbers of the second droplet
and the third droplet in Case 4 are totally different from those in Case 1.
The details have been discussed in Chiang[3]. The third droplet shows the
same Nusselt number distribution as for the second droplet except at the
separation region, where the third droplet possesses a higher value of Nusselt
number due to the angular diffusion of heat flux from the free stream. Similar
behavior for Sherwood numbers are observed for the three droplets.

The surface shear stress distributions are shown in Figure 5. The cascade
effect of upstream wake decreases the surface stress of downstream droplets.
It is well known that the momentum is dissipated along the downstream
direction due to the wake action. Usually the recirculating wake from the
lead droplet has dissipated a significant portion of the momentum upstream
of the second droplet. As a result, the further reduction in shear stress from
the second to the third droplet becomes very limited. Hence, the stress
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difference between the first two droplets is much larger than that between
two downstream droplets for Case 1. Note that in Case 4, the shear stress for
the third droplet is higher than that for the second droplet since the second
droplet interacts with both neighboring droplets. The negative shear stresses
are primarily caused by the contacting wakes of close neighboring droplets.

Figures 6 and 7 present the time variations of drag coefficients and Nus-
selt numbers, respectively. As we expect, the transport rates of droplets are
reduced from the values for an isolated droplet, and values for the down-
stream droplets are profoundly less than those for the lead droplet. The
transport rates for the third droplet are lower than those for the second
droplet, except when the lead droplet's interaction with the second droplet
becomes very strong. The results of Case 4 show that the second and third
droplets exhibit almost identical behaviors. The interaction between the
downstream droplet and the lead droplet becomes very significant for the
small initial spacing case.

The variations of trajectory with time and drag coefficients vs. instan-
taneous Reynolds number for the cases of different initial spacings are illus-
trated in Figure 8 (Cases 1, 2, and 3) and Figure 9 (Cases 4, 5, and 6),
respectively. Results of Case 1 with large initial spacing (D12=D23=12)
indicate that the drag coefficient is smaller for the second droplet than for
the lead droplet and still smaller for the third droplet. The major decrease
in drag occurs in the first two droplets. In Case 2, the drag coefficients of
the lead and the second droplets are significantly reduced (comparing curves
7 and 10, and 8 and 11, respectively) due to the strong interactions when
the first two droplets are spaced only two diameters away. Similar trends
occur for the downstream droplet pairs of Case 3 (comparing curves 8 and
14,and 9 and 15, respectively). The third droplet in Case 2 has a higher
drag coefficient than that of the second droplet since the second droplet is
better shielded by the droplet before it. The D23 thus increases with time.
Also, note that the drag coefficient of the third droplet, which is spaced far
away from the second droplet, seems to be independent of D12 as indicated
in curves 9 and 12. However, it strongly depends upon D23 as illustrated in
curves 9, 12 and 15.

The comparison between results of Figures 8 and 9 leads to the clear
conclusion that as initial spacings decrease, the transport rates decrease
correspondingly. The drag coefficients for the downstream droplets are all
collapsed together. However, at the final calculations when three droplets
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interact extensively with neighbors, the second droplet experiences not only
downstream interactions from the lead droplet but also upstream interactions
from the third droplet. As a result, the second droplet possesses the lowest
drag coefficient. Note the interaction from the upstream droplet is consider-
ably larger than that from the downstream droplet. The lead droplet in Case
2 has the lowest drag coefficient (curve 10) among the lead droplets of three
cases since the interaction from the second droplet is the strongest (spacing
D12 is the smallest). The behavior of the spacing variation is qualitatively
similar to that of large initial spacing case. The variation of D23, for the
cases of approaching droplets, is always negligible except during the final
calculation period.

In order to investigate the effect of D23 on the first and the second
droplets with a given D12, the comparisons of drag coefficients for the first
two droplets with variable D23s are presented in Figures 10 and 11. The
comparisons of results with the same D12 in the two-droplet-only arrange-
ment are also presented. For the cases of small initial-D12, the main droplet
interactions occur between the first two droplets. The presence of the third
droplet does not significantly affect the lead droplet; it reduces the Sherwood
and Nusselt numbers of the lead droplet by less than 5 % in magnitude. The
drag coefficients and Nusselt numbers for the second droplet decrease as the
D23 decreases, though the percent change is small. For the cases of large ini-
tial D12, the behavior of the first droplet becomes insensitive to the presence
of the third droplet. An interesting observation is that the presence of the
third droplet at a sufficient distance from the second droplet, with insignif-
icant hydrodynamic interaction between the second and the third droplet,
may increase the drag coefficient of the second droplet (comparing curves 4
and 5 in Figures 11). The second droplet in the two-droplet-only arrange-
ment receives the interaction of recirculating-thermal-entrainment from the
free stream; as a result, the transfer number is high. Therefore, the surface
blowing is enhanced and the friction drag is reduced. The addition of the
third droplet to the system moves this thermal effect to the third droplet;
hence, the transport rates of the second droplet are recovered. However, for
the case of a small D23, the strong interaction from the third droplet reduces
the transport rates of the second droplet by a large magnitude (curve 6).

A nonlinear regression model using least squares has been employed to
find the correlations between the transport rates of an interacting droplet and
the corresponding transport rates when droplet is isolated. The generalized
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form of numerical correlations for drag coefficient and Nusselt number and
Sherwood number of each droplet can be expressed as

For the lead droplet:

-CD. I= 0.759D12 0'D23 0 -01
CDiso

Nutf n1 = 0.752D12 0-0'D230°0 17

Nufjimj,,

Shjtilm - 0.231D12- 0-2 5D23- 0 -2 03
Shfiimj,

For the second droplet:

CD. = 0.211D12O.D23O1 n
CDio

0

Nu fill-2 = 0.296D120"swD230 195
Nuf ilmi,,

Shif ii 2 = 4.836D12- 0-4"D23 -°a 7

Shiaiim,8
For the third droplet:

CD3 = 0.434D12_oao3D23O.2"
CDiso

Nu MM3 = 0.343D12 0 .02D23 0°1°
Nujilmim o

Shiim3 = 10.476D12- 0° 6' 5D23-°zW
Shijimimo

The correlations are valid for droplet spacing ranged from 2.7 to 12 and
for Reynolds number ranged from 90 to 130. Some correction factors, with
different combinations of Dl2s and D23s, computed from above correlations
are presented in Table 2. The correlations basically predict the right trends
of interacting effects on droplet transport rates. The influence of D12 on the
third droplet is insignificant as indicated by the small exponents of D12.
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3 Conclusions

The detailed behaviors of three vaporizing, interacting droplets for the cases
of different initial spacings have been investigated carefully. The results
indicate that the interacting effects are strongly dependent upon the initial
droplet spacings. The general qualitative conclusions drawn from the two-
droplet study [21 can be applied to two neighboring droplets in the three-
droplet analysis.

Results for the cases of sufficiently large spacing (above approximately 6
droplet diameters) show that the flow field of each droplet is qualitatively
similar to that of an isolated droplet, although the transport rates are reduced
along the downstream direction due to the cascade effect of the wake. The
major drops in transport rates occur in the first two droplets. For the cases of
small droplet spacings (less than approximately 3 droplet diameters), the flow
field of downstream droplets can be significantly altered due to the interaction
effects from the upstream droplets. Usually, the second droplet has the lowest
drag coefficient since it receives interactions from both neighboring droplets.
However, the difference in transport rates between the second and the third
droplets is not significant since both droplets are fully protected by the wake
of the first droplet. The effect of D23 on the behavior of the first droplet is
insignificant. However, depending upon the values of D12 as well as D23, the
effect of D23 on the behavior of the second droplet may become significant.
The correlations for heat transfer and droplet dynamics have been developed
and can be applied in a droplet spray calculation.
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Table 1: Initial Droplet Spacings Considered In Each Case of the Three-
Droplet Study

Case D12 D23
1. 12 12
2. 4 12

3. 12 4
4. 6 6
5. 4 6

16. 6 4

Table 2: Correction Factors for Cd, Nu and Sh with Different Combinatioins
of D12 and D23

D12 D23 _EL1 JVU IVU N•j Sh S2 _

CM.. C.D. Coi.. Nuso Nu,•so Nu,!iao Shia* Shsoo She,.
12.00 12.00 1.004 0.781 0.640 0.874 0.752 0.687 0.956 0.522 0.574
12.00 6.00 1.001 0.694 0.540 0.870 0.657 0.601 0.941 0.688 0.872
12.00 4.00 1.000 0.647 0.486 0.868 0.607 0.559 0.935 0.808 1.077
6.00 12.00 0.935 0.611 0.659 0.847 0.663 0.667 0.947 0.738 0.693
6.00 6.00 0.931 0.542 0.563 0.841 0.579 0.577 0.927 0.972 1.137
6.00 4.00 0.929 0.506 0.510 0.838 0.535 0.533 0.918 1.142 1.465
4.00 12.00 0.897 0.529 0.667 0.832 0.616 0.659 0.945 0.903 0.749
4.00 6.00 0.892 0.470 0.574 0.825 0.539 0.566 0.922 1.189 1.282
4.00 4.00 0.890 0.438 0.522 0.822 0.498 0.521 0.911 1.397 1.696
2.70 12.00 0.861 0.460 0.673 0.819 0.574 0.653 0.944 1.099 0.792
2.70 6.00 0.857 0.408 0.582 0.811 0.502 0.558 0.918 1.447 1.404
2.70 4.00 0.855 0.381 0.532 0.808 0.464 0.512 0.906 1.700 1.905
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Figure 1: Flow field configura:ion and grid distribution at two different times.
Figure 2: Vorticity and isotherm contour plot of gas and liquid phases with
different initial droplet spacings.
Figure 3: Mass-fraction contour of case 1 at two different times.
Figure 4: Local Nusselt number distribution of the three droplets with dif-
ferent initial droplet spacings.

- 1 Lead droplet, Case 1, Re(t) = 85.6, s.p. at 143.2, local min. at 149.9
2 Lead droplet. Case 4, Re(t) = 86.5, s.p. at 130Z3, local min. at 141.4

3 Second droplet, Case 1, Re(t) = 88.7, s.p. at 145.9, local min. at 150.7
4 Second droplet, Case 4, Re(t) = 91.3, s.p. at 156.6, local min. at 0.0
5 Third droplet, Case 1, Re(t) = 89.5, s.p. at 150.1, local min. at 158.8

- _ 6 Third droplet, Case 4, Re(t) = 91.3, s.p. at 167.1, local min. at 0.0

Figure 5: Surface shear stress distribution of the three droplets with different
initial droplet spacings.

- 1 Lead droc!t, Case 1, Re(t) = 85.6, s.p. at 143.2, local min. at 121.7
2 Lead droplet, Case 4, Re(t) = 86.5, s.p. at 130.3, local min. at 114.6
3 Second droplet, Case 1, Re(t) = 88.7, s.p. at 145.9, local mln. at 125.3

-_ 4 Second droplet, Case 4, Re(t) = 91.3, s.p. at 156.6, local min. at 149.8
-_ 5 ThIrd droplet, Case 1, Re(t) = 89.5, s.p. at 150.1, local min. at 129.4

- 6 ThIrd droplet, Case 4, Re(t) =91.3, s.p. at 167.1, local min. at 157.7

Figure 6: Time variation of drag coefficients of the three droplets with dif-

ferent initial droplet spacings.

___ 1. Lead Droplet, (Initial D12=12, 023=12)
-- - 2. Second Droplet, (Initial 012=12, D23=12)

3. Third Droplet, (Initial D12=12, D23=12)
4. Lead Droplet, (Initial D12=6, D23=6)
5. Second Droplet, (Initial D12--6, D23=6)

-.... 6. Third Droplet, (Initial D12--6, D23=6)

7. Isolated Droplet



Figure 7: Time variation of Nusselt numbers of the three droplets with dif-
ferent initial droplet spacings.

1. Lead Droplet, (Initial D12=12, D23=12)
-- 2. Second Droplet, (Initial D12=12, D23=12)

3. Third Droplet, (Initial D12=12, D23=12)
4. Lead Droplet, (Initial D12_-6, D23=6)
5. Second Droplet, (Initial D1 2=6, D23-6)
6. Third Droplet, (Initial D12=6, D23--6)
7. Isolated Droplet

Figure 8: Time variation of droplet drag coefficients and droplet spacings for
the cases of large initial droplet spacings (Cases 1, 2 and 3)

1. D12, Case 1; 2. D23, Case 1; 3. D12, Case 2;
4. D23, Case 2; 5. D12, Case 3; 6. D23, Case 3;
7. CD for the Lead Droplet, Case 1; 8. CD for the Second Droplet, Case 1;
9. CD for the Third Droplet, Case 1; 10. CD for the Lead Droplet, Case 2;
11. CD for the Second Droplet, Case 2; 12. CD for the Third Droplet, Case 2;
13. CD for the Lead Droplet, Case 3; 14. CD for the Second Droplet, Case 3;
15. CD for the Third Droplet, Case 3; 16. C5i for an Isolated Droplet;

Figure 9: Time variation of droplet drag coefficients and droplet spacings for
the cases of large initial droplet spacings (Cases 4, 5 and 6)

1. D12, Case 4; 2. D23, Case 4; 3. D12, Case 5;
4. D23, Case 5; 5. D12, Case 6; 6. D23, Case 6;
7. CD for the Lead Droplet, Case 4; 8. CD for the Second Droplet, Case 4;
9. CD for the Third Droplet, Case 4; 10. CD for the Lead Droplet, Case 5;
11. CD for the Second Droplet, Case 5; 12. CD for the Third Droplet, Case 5;
13. CD for the Lead Droplet, Case 6; 14. CD for the Second Droplet, Case 6;
15. CD for the Third Droplet, Case 6; 16. CD for an Isolated Droplet;



Figure 10: Time variation of drag coefficients of the first two droplets for
D12 = 4 and variable D23s

___ 1. The First Droplet of Two-Droplet Calculation, D12=4
-- - 2. The First Droplet of Three-Droplet Calculation, D12=4, 023=12

3. The First Droplet of Three-Droplet Calculation, D122=4, D23=6
4. The Second Droplet of Two-Droplet Calculation, D12=4
5. The Second Droplet of Three-Droplet Calculation, 012=4, D23=12

-.... 6. The Second Droplet of Three-Droplet Calculation, D12=4, 023=6

Figure 11: Time variation of drag coefficients of the first two droplets for
D12 = 12 and variable D23s

1. The First Droplet of Two-Droplet Calculation, D12=12
-- - 2. The First Droplet of Three-Droplet Calculation, 012=12, D23=12

3. The First Droplet of Three-Droplet Calculation, D12=12, D23=4
4. The Second Droplet of Two-Droplet Calculation, 0122=12

5. The Second Droplet of Three-Droplet Calculation, D12=12, D23=12
6. The Second Droplet of Three-Droplet Calculation, D12=12, D23=4
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Axisymmetric Vaporizing Oxygen Droplet Computations

C. H. Chiang*
W. A. Sirignanot

Department of Mechanical and Aerospace Engineering
University of California, Irvine, California

Abstract r ri/a', radial coordinate
R R*T•/(U 2,1.M ), gas constant

The detailed analysis of a cold LOX droplet suddenly RO universal gas constant
introduced into the hot methane fuel-vapor stream has Re. a•U.,op' ,. gas-phase Reynolds number
been performed in this study. The effects of variable Ret a'U•, 0 p',j,0 o'0 , liquid-phase Reynolds number
thermophysical properties, real gas behavior, transient T T'/T., temperature
heating and internal circulation of liquid, deceleration V' time
of the flow due to the drag of the droplet, boundary- V V'/U 0,o, velocity
layer blowing, and moving interface are included. A Yi mass fraction
primitive-variable formulation with an implicit finite- z z'/a'o, axial coordinate
difference scheme has been developed to solve the com-
plete set of Navier-Stokes, energy, and species equa-
tions. The results are presented for the low pressure Greek
case. The interesting phenomena due to the large sur- 0 angular coordinate
face blowing and surface boiling is examined. The mod- a u'(Ua, 2 s,
ifications required for the current model to treat high 0c /ic(U, conuit ofas phseKY /c' conductivity of gas phase
pressure case are discussed. 9 g

ICI x'/x'j,0, conductivity of liquid phase
IYg I'/y•,o, viscosity of gas phase

Nomenclature P/ p//,, viscosity of liquid phase
P9 p•/Pgoo, density of gas phase

P1 p'/p, 0 , density of liquid phase
Cpg Cpg'/CpJ,o, specific heat of gas phase r~9  t1XKo2/(0.,Cpg,),

CPI CP'1/CP'0,, specific heat of liquid phase gas-thermal-diffusion time
VE VI', mass diffusivity of gas phase 7E t' Kto/(a JPo ),

F F/(',,,op ), drag force liquid-thermal-diffusion time
ffugacity rHg ti a', .o/(ao 2p ,,.),

h h'/(C mT' •) enthalpy gas-hydrodynamic-diffusion time
L'/(Cp, 0 T&,), latent heat of vaporization THI t'p/ ,o(a'oPoI),
L9 PV' C '. /K',C liquid-hydrodynamic-diffusion time

gas-phase Lewis number rs t' D ,,o/(a 2 ), gas-species-diffusion time

I M'/M ; M = M.y +(7 Yf)M, fugacity coefficient

equivalent molecular weight
p (p, - Po)/(PoUo2 ), gas-phase pressure Subscripts

(A -Po 0 )/(PtoU'oo 2 ), liquid-phase pressure
Peg Re9 Prg, gas-phase Peclet number ave volumetric average
P'. Re, Prj, liquid-phase Peclet number crit critical point
Pr9  l•,Cm/•,I/ ,, gas-phase Prandtl number f fuelPr Y , gas phasePrj ,0 CP',o/C,0 , liquid-phase Prandtl number 1 gas phase

Q1 eatflu I liquid phase

n normal direction
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v vapor analysis while simplified conduction models( such as in-
0 initial conditions finite conductivity, conduction limit, and effective con-
9 tangential direction ductivity models) are frequently used for liquid-phase
00 free stream conditions analysis. No convection and variable properties effects

have ever been considered in the existing LOX mod-

Superscript els. It is well known that the quasi-steady assumption
becomes invalid with the high pressure environment.

0 ideal gas state The internal motion of the liquid phase, induced by the
dimensional quantity gas-phase convection, may significantly change the time

scales of transport processes of the droplet. Variable
property effects due to the variations of temperature

1 Introduction and species composition can also affect the computed
quantities. These effects are no longer negligible in the

The study of the liquid behavior of liquid-propellant development of a comprehensive numerical model for

rocket engines, where both liquid fuel and oxidizer are the LOX droplet.

injected from one end of the chamber, has recently be- In parallel with the development of simplified LOX

come the subject of various experimental and theoret- vaporization modeling, there is a need to pursue "ex-

ical investigations. One of the characteristics whereby act" solutions (via finite-difference calculations) of the

liquid-fueled rocket engines differ from air-breathing flow and thermal fields surrounding and within vaporiz-

engines is that both fuel droplets and liquid oxygen ing LOX droplets. These Navier-Stokes solutions serve

(LOX) droplets are present. The use of LOX/hydrogen two major purposes: 1) correlations for quantities such

fuel propellant combination or LOX/methane propel- as droplet drag coefficients are obtained that can be

lant combination in an: advanced launch vehicle booster used in spray combustion analyses with the simplified

engine appears extremely attractive due to high propel- models (which do not independently predict drag co-

lant bulk density and the relatively high performance efficients) and 2) the exact solutions can be used as a
characteristics of these propellant combinations. Hy- standard for comparison of the simplified models. Also

drogen and methane are cryogenic fuels and would the numerical data can be provided as a benchmark for

be injected in a fluid state. Usually in the practical the experimental research.

combustor, liquid hydrogen or liquid methane vaporize The present research involves the -detailed investi-

faster than the oxygen droplets. As a result, oxygen gation of an isolated liquid oxygen droplet vaporizing

droplet vaporization becomes a rate-controlling factor in the high temperature fuel-vapor environment. The

in determining the mixing performance of the hetero- forced convection of the gas phase, the transient decel-

geneous fuel/oxidizer mixture. eration of the flow due to the drag force, the surface re-

Due to some technical difficulties in handling cryo- gression, the internal circulation and transient heating

genic fuels and LOX droplets at extremely low tem- of the liquid phase, and variable properties are consid-

perature in the regular laboratory, only very lim- ered. The LOX vaporization at near critical conditions

ited experimental works [1, 2] utilized LOX/H 2 and will be addressed since most rocket engine combustors

LOX/CH 4 propellant to study combustion perfor- are operated in the very high pressure domain where

mance have been constructed. Although substantial the state equation and thermodynamic functions are

theoretical/computational results have been reported, considerably different.

the theoretical studies of the vaporization of LOX Our current axisymmetric models have been devel-
droplets have not reached a satisfactory status. Many oped for hydrocarbon fuel droplets vaporizing under
assumptions employed to simplify analysis have ren- subcritical conditions [6]. Therefore, the well devel-
dered the results to become questionable when detailed oped isolated-droplet-code will be utilized as the base
transport processes of LOX vaporization occur at a code to facilitate the present research. The problem
high temperature, high pressure and convective envi- features very complex property calculation along with
ronment. very high transfer number ( 2 0(100) )and high density

Generally, the strategy of droplet research over the ratio. The early rapid surface heating is worthwhile to
past decade has been to develop simplified transient develop a new scheme to surmount the numerical diffi-
vaporization models which are physically accurate but culties. In the present research, some effort is required
sufficiently computationally efficient so that hundreds to adjust these transient droplet heating and vaporiza-
or thousands of droplets in a spray combustor can be tion models so that liquid-propellant rocket combustion
tracked [3, 4, 5]. During the past decade, the research can be studied.
of LOX vaporization has more or less followed the same The variation of liquid-phase density with tempera-
trend. The existing LOX models are mainly focused on ture is significant. The LOX may experience the ther-
the one-dimensional calculations where quasi-steady as- mal expansion during the transient hcating and the
sumption and film theory are employed for gas-phase surface moving velocity cannot be neglected. In or-
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der to carefully account for unsteadiness due to density Momentum Equation in z-direction
variation, the primitive variables (V,, V;, pt and pt) for- -
mulation for the liquid phase is employed. Note that0 + -pr) +
in previous codes [6, 7], the liquid-phase momentum acrH V O(Re9 P9 v~ V )
equations are formulated by a streamfunction-vorticity
approach. The modifications of the code to adapt the a a avc . av) 2 a
primitive variables for the liquid phase as well as to +-{rRe,(p9 V*V+p,)}= Ir [- _, [

employ more accurate interface conditions have been

developed. The details will be discussed in the follow- av. Vt av,
ing sections. {r/-[2-V - - }) + FD, (3)

ingsecion.90 r 8r

where FD is the D'Alembert force (reversed inertial

2 Formulation force due to the drag force on the droplet) which is
uniformly applied to the whole gas-phase flowfield.

The schematic flow configuration is presented in Fig- Energy Equation
ure 1 where the flow passing over a vaporizing LOX a a
droplet moving with respect to gas stream is shown. Cp{q (rp2 T,)+- (rPegpV,7T,)+T(rPeqp9 V2 T9 )}

The flow is laminar and axisymmetric with initially uni- 
9 arE(aea Z

form ambient conditions specified by UOO, T,,, p•,, po,
and Yo, = 0. The frame of reference is fixed to the [a a
center of the LOX droplet. The problem can be viewed +(h, - h1 ) (rpgY.) + (rPegpgYoY V-)
as an impulsively-started flow over a fixed LOX droplet.
Unless otherwise stated, the basic assumptions remain
the same as mentioned in Chiang et al [6].-a-1 a =- '- a +"

+-(r P eqpg Y,,V,) r 2  + jrg
The conservation equations in both phases are writ- az Tr a? r a z-

ten in non-dimensional forms with respect to a cylin-
drical coordinate system. The initial radius, upstream aYo
velocity and thermophysical properties have been used -- (rLe (Cpl - Cpo)TapgtD )
to non-dimensionalize the variables. The diffusion Or -_ -r

time has been selected as the time scale in this study. a Y.
According to the non-dimensionalization given in the T-z (e -) 4)

nomenclature, bhe governing equations are presented T
below. where h= fT0 CpgdT

Species Equation

2.1 Governing Equations a a Pea , Pe,
-~(rpgY,) + (f- .V.Y)+-( - gV i

Gas Phase = Or a' ) (tpD '•z) (5)
Equation of State

R
Continuity Equation P9 = -' (PgTq - M) (6)

We assume that the mixture behaves as an ideal

- (rp.) + a(rRegpg Vr) + (rRegp9 V.) 0 (1) gas. This is a good assumption for the low pressure
Orjj9  Or case. The assumption may become impractical for

pressure near the critical point. The other alterna-
Mom•'.itum Equation in r-direction tive to relate p,,p,,T. and Y1 is to employ the two-

a a a parameter Redlich-Kwong equation [81 with the mixing
rHg (rpgVr)+Or frRe,(p.VVr+Pg)}+-1Z(rRegpgVrV,) rule of Chueh and Prausnitz [9]. Our test runs indi-

cated that the computational time will increase tremen-

dously since it is necessary to solve the real root of a
2 0 aV, V, aV9 a aV} 0V 2  third-order polynominal equation which is a very time-

3 Or ?r r z ] z ' a-z Or consuming task within an iterative Poisson equation
solver. For the time being, in order to prevent exhaust-

2pg a2 V, - V, .aV ing our precious supercomputer allocation, we employa3 Or (2) this assumption for the pressure below 40 atms.
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Liquid Phase 2.2.2 Gas/Liquid Interface Boundary Condi-
tions

Tangential Stress Condition:Continuity Equation

aa,.g - .a,I = VS,'

+I (rpt) + -(rRetpgV,) + a-Z(rReptV.) = 0 (7) where o,' = •o + d, T; Usually do, is assumed to be a

Momentum Equation in r-direction constant. The nondimensional form becomes

0 0iV.) 0re~j,-rp~+ V.) +ae -I + OV"
OTý I TZ Rei \an a a 90

28 d OV, V,. OV, a av. orv
•{.r 2- - - 8: ]+O[•+ r 1 _ , (ovg,. ve + a 1 ov _ 1 do dTi

av, Vo Rea O n a a d6 ad7T d-
+ Reipi - 3-.( r a'r Oz ) (8) (13)

+ Rem- -32 r r azNormal Stress Condition (13

Momentum Equation in z-direction
0•.(pV) 0 0 p• + 1€,g t -p' - •g= 2'aa -(rpV.)+ (rRegpgV,7 V.)+ a {rReg(p:VV, 2 +pg)} ' '

ýTH! Tr TThe corresponding nondimensional-form of the above

S •OV, OVz 2 8 . - OVz V. aV equation is
-{r pIt-' + -.•]} +-2-{rpa[ 2 -' -r]9}
F r 8: Or + 3z Oz r Or Pg '+J-.o i

(9) P- Pg- 2 P n + 2 Po Reg On
Energy Equation Rej an p' Reg an

a 8 a 0 P=g2 ,- oPt,o
C O- (rpTt~) + -(rPetptVrTg) + -(rPepV2 Tg)} 2- + (14)

t)TEI Or Oz a U,0p

a OCT O 0 0T) (10) Continuity of Tangential Velocity:
= rx (-A'IT,) + a(iE
Or Or az a

Pressure- Density-Temperature Relation Vg,9,s = I1,8 s (15)
The Hankinson-Brobst-Thomson technique is used to

predict the compressed liquid density. Conservation of Mass Flux:
By assuming no accumulation of mass at surface, the

1 = , [1 eln ( f3 +- )] (11) integral form of the continuity equation can be written
P1, P~,aait (8 \/+ P"' I ias

where pjs,., the saturated liquid density at the vapor
pressure, pp. 3 is obtained from RegVg , - m d a Re, (-±- dd a (16)

O3/p,¢jt=-1 +a(lT)/ +b(lTr)2 1/3 +d(lTr) dr-2 T.),ReV'- 1

+ e(1 - T,.) 413  (12) where the droplet regression rate is give
where T -= "T. Values of constants are available in d a - I! ( " p

Reid et al [10]. We assume that there is no absorption d-rHg P 1a \,p\ / ReP2 to 2Pp(v'

of fuel-vapor into the liquid phase; as a result, there is
no need to solve species equations for the liquid phase. d a 1 )] sinOdO +1a dp,,,} (17)

dTH9 Re g 3 drHr9
2.2 Initial and Boundary Conditions Note that this equation is employed to calculate the

instantaneous radius.
Continuity of Temperature:

2.2.1 Initial Conditions T9, = T1," (18)

Gas Phase: Vr = pg = = 0, V, = T7 = pg = 1 Conservation of Energy:
Liquid Phase: V,. =pt = V, = 0, P, = 1, 7, = T,oC
Gas/Liquid Interface V,. = V, =Y = P2 = Pt = (K \OT, 87t
O, To = T1 = Tt,o,pY = 1/T,o,p=1 Xt an "n
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pgL d a I /The enthalpy of vaporization for oxygen can be cal-
+ Pe[P-(V )] -- )b - (19) culated from the thermodynamic relationship

dr, Reg P',o ,

Conservation of Species: h° - h.,,, . ln 0o

DV Y ° = R eS c,[(V, .I 
R-T OT (26))

aTrg Reg L = h•,, - hjo (27)
(20)

YO - T, Relation for Phase Equilibrium: The enthalpy of vaporization at high pressure case
The vapor pressure is usually estimated as fun•.3on of is expected to be different from the conventional latent

surface temperature. The correlation taken from Reid heat which is a function of temperature only.
et al. [10] is employed in the current study. The detailed computations of droplet thermophysical

properties for the high pressure case can be found in
Reference [12, 13, 14, 15, 16, 17]

ln(p',,./p'c,.) = (1 - z)-'[Az + Bz:1 5 + C:3 + Dz8 ]

where x = 1 - T (21) 2.2.3 Outflow (r = ro, r/2 < 0 < 7r) Boundarywher z =i - •/T•.itConditions:

This kind of correlation have been particularly suc-

cessful in computational programing. D (V D (V)= • (T)D= D (pg)D= D-(Y) = 0
The mass fraction at the interface can be determined Vt (T = (p = ( 28)by (28)

Y= X - oM. (22) 2.2.4 Inflow (r = ro,0 < _< 7r/2) Boundary

+(1 Conditions:

At low pressure case, the ideal-solution assumption
is valid and the Lewis fugacity rule leads to the Raoult' pg = YO = Vt = 0, T = pg = V, = 1 (29)
law which simply says that

2.2.5 Axis of Symmetry (0 < r < rco, 0 = 7,ir)

Xo = P91 (23) Boundary Conditions
S~ Gas Phase:

However, the ideal behavior of gas mixture no longer

occurs under the high pressure situation. The va- 8Ve 8pg -p " 8 -_pg _ (Y30
por/liquid equilibrium requires that fugacity of each Vr = 8 =-80 - 80 - T0o -- 0- 0 (38)

species component must be equal in both phases at
the surface; that is fig = fit, where subscript i stands Liquid Phase:
for species. Hence, it is necessary to compute fugacity 8Ve _pi 0'T 'Opt
of oxygen in both phases. The mole fraction of oxy- V -j= = -7- 8 -0 - = 0 (31)
gen vapor can be determined once fugacity is available.
Since the fugacity has a dependency on mole fraction ( 2.2.6 Boundary Conditions for Governing
through the mixing rule), the procedure for the calcu- Equations of Liquid Phase
lation of Xo requires the iteration of Xo until a conver-
gence criteria is satisfied. The equations for iteration At Droplet Surface
are given in the following two equations. Solutions obtained from the boundary-conditions-

solver are regarded as the Dirichlet conditions for the

P_ o o f•* Vtdp liquid-phase solver.
Xo = g 0",o exp ( ROT (24) At Droplet Center

where V/ is the molar density of the liquid phase. an O= n -a 0 (32)

Vapor-phase fugacity coefficient of oxygen, OV,, is
given by 3 Solution Procedure

In Ov,o = fPo;(V 0,. - ROT/p)dp (25) A brief description of the computational methodologies

RT is given here. The finite-difference equations, and de-
In order to integrate this equation, the Redlich- tailed numerical procedures are given in Chiang [11.

Kwong equation of state combined with the mixing Since we have considered internal circulation and
rules of Chueh and Prausnitz must be employed. Xo transient heating of the liquid phase, forced convection
is implicitly involved in the above equation. of the gas phase, transient deceleration of the flow and
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variable properties, it is then necessary to solve simul- formation from [10, 18, 19, 20] and constructed the
taneously the complete set of unsteady Navier-Stokes property correlations based on the ambient pressure
equations, energy and species equations, combined with and an extensive range of temperature before start-
the appropriate boundary conditions. The nonlinear ing droplet computation. We learned that some of the
and highly coupled equations make the analytical solu- involved material properties change abruptly near the
tion almost impossible. We have to resort to an implicit interface where the temperature gradient is large.
finite-difference numerical algorithm. The major numerical difficulties occur at a very early

The governing equations are represented in general- time. The large gradients at interface seem to create
ized coordinates which conform to changing boundaries inappropriate initial profiles used to start iterations.
due to decreasing droplet radii associated with liquid Since the initial conditions are physically meaningless
component evaporation. Pressure correction equations before a residence time, it is safe to employ any suitable
are employed to satisfy indirectly the continuity equa- profile for variables in order to form a converged solu-
tions in both phases. The pressure correction equa- tion. We have designed a "ramp temperature profile,"
tions, which are Poisson type of equations, are solved where the ambient temperature increases slowly with
by the successive-over-relaxation (SOR) method. Note time, to smooth the transient gradient of temperature
that the equation of state is incorporated with the variation. Also, we have developed a control-volume
Poisson equation to relate pressure and density of gas scheme to solve conservation equations at the interface
phase. The density is immediately updated when the sequentially to decouple temporarily variables at the
new estimate of pressure becomes available during the beginning of computation. After a near converged so-
iterations. In the pressure correction equation of liq- lution is obtained, we switch to the tri-diagonal block
uid phase, we temporarily decouple the relationship solver. The danger of solving interface conditions se-
between density and pressure to avoid the undesired quentially is that the temperature may shoot above
acoustic pressure wave. Actually the liquid density is the boiling temperature dramatically when the LOX
a very weak function of pressure. Hence, the varia- droplet temperature approaches the boiling point.
tion of pressure in the liquid phase is assumed to be
caused by the fluid motion only. The density is updated
until the iterations of pressure correction equation 4 Results and Discussion
are done. The momentum, energy and species equa-
tions are solved by an alternating-direction-predictor- The numerical simulations of an isolated LOX droplet
corrector (ADPC) method. The non-linear gas/liquid suddenly injected into a methane-fuel-vapor flow are
interface boundary equations are treated by a quasi- studied in the present research. The ambient temper-
linearization technique and solved directly by the in- ature and initial droplet temperature, are selected to
version of tridiagonal block matrices. The governing be 1,000 k and 100 k, separately. The initial droplet
equations of motion as well as the interface boundary Reynolds number is 100. The critical pressure and tern-
conditions are solved sequentially in an interactive se- perature for the LOX droplet are 154.58 k and 50.43
quence until convergence is achieved for each time-step atms, respectively. In order to handle the surface blow-
of the calculation. ing at the interface, we have to employ a very small

Since the reference frame is fixed to the liquid time step which render the whole computation become
droplet, the evaluation of the drag force and its as- very time-consuming. For this reason, only very lim-
sociated velocity correction for the gas phase are incor- ited production runs with pressure ranging from 10 to
porated in the iterative process. In order to maintain 50 atms are made in order to study the pressure ef-
a dense grid distribution at the droplet interface, the fects. Unfortunately, our code fails when the ambient
grid locations have to be adjusted at each time step pressure exceeds 40 atms. The detailed reasons will be
to accommodate droplet surface regression. Obviously, discussed later. We only present results from the low
the metrics of the transformation have to be updated pressure calculations.
whenever the grid system is moved. In general, the flowfield structure is similar to that

In the overall procedure, the sequential solutions of of a fuel droplet vaporizing in an air/fuel mixture. The
governing equations and boundary conditions with grid detail discussion of the global flowfield is given in Chi-
and relative velocity adjustment are iterated until con- ang et al [6]. It is worthy to note that LOX vapor-
vergence is achieved. After convergence is reached, the ization features highly surface blowing and highly tran-
drag coefficients, average Nusselt and Sherwood num- sient heating which leads to surface boiling at very early
bers are evaluated at prescribed time intervals, lifetime. The gas flowfield near the droplet interface is

The actual property computation is extremely time- expected to be significantly influenced by the vapor-
consuming since most of the thermo properties are ization. The transport rates are also expected to be
strongly coupled together through the set of thermo- significantly reduced due to the surface blowing.
dynamics equations. An iterative approach has to be Several snap shots of the flowfield are presented in
employed. We have compiled the available property in- Figure 2 to Figure 6. Figure 2 shows the instan-
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taneous velocity vectors at 5 hydrodynamic diffusion recirculation wake induced by the early separation of
times when 20% of mass has been vaporized. The out- the flow has pushed the maximum shear stress point to
ward velocity vectors are observed at the 4 grid points forward of the equator. The asymmetric distribution of
next to the surface of the front stagnant region. Actu- shear stress is attributed to the high surface blowing
ally, the surface blowing has pushed the velocity stag- Figure 9 presents the surface Nusselt number distri-
nant point away from the droplet surface. bution. By a pure diffusion analysis, it can be shown

The large surface blowing also cause the flow separa- that the Nusselt number for a stagnant sphere is 2.
tion to occur early since the vertical interaction of mass The results indicate that the Nusselt numbers in the
flux momentum with the boundary-layer flow makes the present study are well below the stagnant value even the
pressure gradient more favorable for flow separation. Reynolds number is intermediate high. Similar trends
The predicted separation angle is 1080, measured from for the Sherwood numbers are also identified. Due to
the front stagnation point, while the rigid sphere pre- the continuous surface boiling, the high blowing veloc-
dicts 1290 [21]. A recirculation wake, detached to the ity has significantly impeded the heat and mass trans-
surface, is clearly shown. The wake moves backward port processes of the LOX droplet.
in downstream direction as the vaporization increases. The normal velocity is mainly determined by the sur-
As a result, the increase in wake length will be also face mass fraction and mass-fraction gradient which are
appreciable. The current calculation predicts the wake associated with the surface temperature, Nusselt num-
length is about 1.25 droplet diameter. For the same ber and Sherwood number distributions. Hence, the
Reynolds number, the sphere without surface blowing distribution of normal velocity shown in Figure 10 re-
has a wake length that is about 0.8 droplet diameter sembles those of surface temperature and Nusselt num-
[21]. bers; it progressively decreases along the downstream

We have learned in all calculations that the LOX direction, then slightly increases after flow separation.
droplet surface reaches the boiling temperature, which In fact, the oxygen vapor at the recirculating zone is rel-
is about 120 k for the case of 10 atms ambient pres- atively lean due to the shape effect of the droplet. As
sure, very quickly. However, the droplet core remains a result, the blowing velocity increases in this region.
cold since the conductivity is low and at early time, The time variations of total drag and its three com-
the circulation strength is not strong enough to convect ponents, pressure, friction and thrust drag, are illus-
muchce energy. All the available heat transfer from the trated in Figure 11. The friction drag contributes less
gas phase is used to heat the surface and also utilized than 20% of the total drag. Also, the-friction drag re-
for latent heat of vaporization. The surface boiling per- mains almost constant throughout our calculation since
sists throughout the droplet lifetime. The very rich and no change of surface condition occurs after the LOX
cold oxygen vapor surrounding the droplet is depicted droplet-surface reaches the boiling point. The slight in-
in Figures 3 and 4. The large gradient occurs at the crease in pressure drag is offset by the increase in thrust
front stagnant region as we expect. drag; as a result, the total drag almost levels off even

The internal circulation of the droplet is evidenced though the reduction in Reynolds number continues.
in Figure 5. Since a stream function is not avail- The transient variation of Nusselt number is demon-
able in this unsteady, compressible problem, we have strated in Figure 12. Care must be taken when the
to construct the "quasi-steady stream function", which convective effect is taken into account for the noncon-
strictly speaking does not satisfy the continuity equa, vective Nusselt or Sherwood numbers in a simplified
tion by definition, in order to demonstrate the circula- film-theory model. The conventional Frossling corre-
tion. Note that since the droplet surface moves as the lation, which is a function of Reynolds number and
vaporization persists, the liquid normal velocity at sur- Prandtl (or Schmidt ) number, may yield a significant
face is not identically zero. Hence, the droplet surface error. Our results indicate that the Nusselt and Sher-
is not necessarily a streamline. Due to the large viscos- wood numbers are much less than their stagnant val-
ity ratio, the time needed to develop a spherical vortex ues(2).
is much longer than for the hyrdrocarbon-fuel droplet Figure 13 presents the changes of droplet heating
case. rate, averaged surface mass fraction, temperature, and

The isotherms of droplet at two different times are averaged volumetric temperature (nondimensionalized
shown in Figure 6. The heat conduction mode domi- by the boiling temperature). Due to the persisting sur-
nates a significant portion of the early droplet lifetime, face boiling, the energy distributed to the droplet heat-
The convection mode then takes over after 3 hydrody- ing is moderately low. Most of the available energy for
namic diffusion times. LOX droplet has been used for enthalpy of vaporiza-

The pressure distribution along azimuthal direction tion. The surface temperature peaks very quickly. The
is displayed in Figure 7. Due to the momentum dissi- volumetric temperature increases slowly with time.
pation caused by the surface blowing, the pressure re- A case with prý. = 20 atms is also performed. The
covery at the rear portion of droplet is poor. The shear qualitative behavior is similar to that of case of pL.o =
stress distribution is illustrated in Figure 8. The large 10. Since our supercomputer resource is very limited.
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we decide to terminate the calculation when 30% of the rather than heating the internal fluid. As a result, the
mass has vaporized. Our results indicate that the LOX transient droplet heating is responsible for the unsteady
droplet vaporizes much faster in the high pressure case thermal behavior of the LOX droplet.
as shown in Figure 14. The diffusion time scales in the This research by no means is completed. The cur-
high pressure environment are shorter than in the low rent model apparently is insufficient to handle the LOX
pressure environment. The period for transient droplet droplct at the high pressure environment. The ideal gas
heating and development of the internal circulation de- assumption is questionable when the pressure is near
creases as pressure( and density) increases and thus the the critical condition where the interaction of other
droplet lifetime reduces. The preliminary results also species is important. There is a lack of a computa-
indicate that the drag coefficients is relatively insensi- tionally efficient equation of state which is applicable
tive to the variation of pressure. However, the Nusselt for a wide range of pressure in two dimensional cal-
and Sherwood numbers increase as pressure increases. culations. The Redlich-Kwong equation is accurate

We have experienced numerical difficulties with the but is too time-consuming to incorporate with a pres-
high pressure cases (p >- 40 atms). The surface tem- sure correction equation. The new method to linearize
perature shoots above the critical temperature at the the nonlinear equation of state is currently underway.
very early time of the computation. The liquid phase A very restrictive assumption that ignores the solu-
pressure solver fails when the interface solutions be- bility of the fuel-vapor in the liquid phase should be
come disarraied due to the overshoot of surface tern- released in our future computation. There is also a
perature. In our first analysis, two assumptions of need to review more advanced numerical techniques at
our model turn out to be critical in the high pressure the present high transfer number and high density-ratio
case. In the present model, there is an inconsistency of two-phase flow. The ADI originated methods currently
equation of state employed at the gas/liquid interface, employed converges slowly at the early computation.
We use the Redlich-Kwong equation with mixing rules
to determine the mole fraction and then the density,
while in the gas-phase pressure equation, we employed Acknowledgement
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